Entwurt einer EC+-+-Spezifikation
und -Implementierung auf Basis von

ISO C

Diplomarbeit im Fach Informatik

vorgelegt von

Christoph Dietze

geb. 03.06.1980 in Erlangen

angefertigt am

Institut fiir Informatik
Lehrstuhl fiir Informatik 2
Programmiersysteme
Friedrich-Alexander-Universitit Erlangen—Niirnberg
(Prof. Dr. M. Philippsen)

Betreuer: Volker Barthelmann, Michael Klemm

Beginn der Arbeit: 02.01.2006
Abgabe der Arbeit: 03.07.2006

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
dhnlicher Form noch keiner anderen Priifungsbehorde vorgelegen hat und von dieser
als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen, die wortlich
oder sinngemif iibernommen wurden, sind als solche gekennzeichnet.

Der Universitit Erlangen-Niirnberg, vertreten durch die Informatik 2 (Program-
miersysteme), wird fiir Zwecke der Forschung und Lehre ein einfaches, kostenloses,
zeitlich und ortlich unbeschréanktes Nutzungsrecht an den Arbeitsergebnissen der Di-
plomarbeit einschliefslich etwaiger Schutzrechte und Urheberrechte eingerdumt.

Erlangen, den 03.07.2006

Christoph Dietze

Diplomarbeit

Thema: Entwurf einer EC++—Spezifikation und —Implementierung auf Basis von
ISO C

Hintergrund: EC-++ (siehe http://www.caravan.net/ec2plus) ist eine ein-
geschrinkte Variante von C++ fiir eingebettete Systeme. Da viele C+-+-Konstrukte
versteckt grofen und/oder ineffizienten Code generieren, wurde eine Untermenge von
C+-+ spezifiziert, die derartige Konstrukte verbietet (z.B. Templates, RT'TI oder Mehr-
fachvererbung).

Die EC+-+-Sperzifikation ist verfasst als Liste von Einschrinkungen gegeniiber der
ISO C++—Sperzifikation. Die derzeit verfiigharen Implementierungen von EC-++ sind
i.d. R. eingeschréinkte Versionen von vollen C+-+—Compilern. Da EC++- jedoch sehr
viel der “schwierigen” C++-Féhigkeiten eliminiert, ist anzunehmen, dass EC+-+ so-
wohl bzgl. Spezifikation als auch Implementierung dhnlich nahe an ISO C liegt wie an
ISO C++.

Aufgabenstellung: Im Rahmen dieser Diplomarbeit soll eine alternative EC+-+—
Spezifikation erarbeitet werden, die nicht aus Anderungen des ISO C+-+ Standards,
sondern aus Erweiterungen und Anderungen von ISO C besteht.

Die géinderte C—Spezifikation ist anschlieftend in einem ISO-C—Compiler zu im-
plementieren und iiberpriifen. Die erarbeitete Spezifikation ist zusammen mit dem
Compiler auf Vollstindigkeit zu priifen. Weiterhin sollen Metriken aufgestellt wer-
den, die es erlauben, die bereits existierende EC++—Spezifikation und die im Rahmen
der Arbeit erstellte zu vergleichen und zu beurteilen. Fiir die Implementierung des
EC++4—Compilers sind ebenfalls Metriken zu entwickeln, die einen Vergleich zwischen
dem EC++—-Compiler und dem urspriinglichen I[ISO-C—-Compiler ermoglichen.

Die Ergebnisse der Arbeit sollen sein:

e EC-++ Spezifikation auf Basis von ISO C
e um EC-++ Unterstiitzung erweiterter C Compiler
e Erarbeitung von Metriken zur Beurteilung der Spezifikation

e Vergleich (mit den entwickelten Metriken) der auf C basierenden Spezifikation
mit der originalen, auf C++ basierenden

e quantitative Analyse des Aufwands der Implementierung
Betreuung: Volker Barthelmann, Michael Klemm, Michael Philippsen

Bearbeiter: Christoph Dietze

i

Zusammenfassung

ECH+ ist eine Programmiersprache, die speziell fiir eingebettete Systeme entworfen
wurde. Sie ist als eine Untermenge der Sprache C-++ definiert. Features von C++,
welche fiir eingebettete Systeme als ungeeignet erachtet werden, wurden bei EC-++
entfernt. Zum Beispiel werden Templates, Ausnahmebehandlungen und Mehrfachver-
erbung in EC+-+ nicht unterstiitzt. Dadurch, dass ein beachtlicher Teil der C+-+—
Funktionalitiat entfernt wurde, ndhert sich EC+-+ der Sprache C an. Daher verfolgen
wir in dieser Arbeit den Ansatz, EC++ auf Basis von C, an Stelle von C+-+ zu de-
finieren und betrachten EC++ unter verschiedenen Gesichtspunkten. Erstens geben
wir die Definition einer alternativen Grammatik im selben Stil, wie die der offiziellen
EC-++-Sperzifikation beiliegenden Grammatik an. Als Zweites definieren und untersu-
chen wir die funktionalen Unterschiede und Inkompatibilitdten zwischen C und EC++.
Drittens analysieren wir den Umfang einer alternativen, formalen Spezifikation. Unse-
re Absicht, eine solche Spezifikation in derselben Weise, wie die offizielle Spezifikation
zu erstellen, stellte sich als nicht durchfiihrbar heraus. Wir erstellen teilweise eine sol-
che auf C basierende EC+-+-Spezifikation und stellen fest, dass es nicht moglich ist,
diese in einer sinnvollen Art zu definieren. Wir wenden verschiedene Metriken an, um
den Umfang der offiziellen und der alternativen Spezifikation zu quantifizieren und
kommen zu dem Schluss, dass sowohl die Anwendbarkeit, als auch das Erstellen einer
EC-++-Sperzifikation basierend auf C nicht in einem sinnvollen Rahmen moglich ist.

Die meisten vorhandenen EC+-+Ubersetzer sind reduzierte C-+-+—Ubersetzer. Wir
haben einen anderen Ansatz verfolgt, und einen C-Ubersetzer zu einem EC++—Uber-
setzer erweitert. Wir beschreiben, welche Anderungen und Erweiterungen in den C—
Ubersetzer eingebracht werden miissen, um die Inkompatibilititen aufzulésen und die
neue Funktionalitit von EC++ einzufiihren. Wir verwenden Metriken, um den Auf-
wand der Implementierung quantitativ zu bestimmen und betrachten den Arbeits-
aufwand als angemessen. Wir wenden auch eine Metrik an, um die Komplexitit der
Implementierung zu bestimmen. Dies zeigt Funktionen von hoher Komplexitit auf,
welche schwieriger zu verstehen, zu testen und zu warten sind. Diese Funktionen sind
Kandidaten fiir eine Umstrukturierung.

i

Abstract

EC++ is a programming language designed for embedded systems that is specified as
a subset of the C++ language. Features of C++ that are considered inappropriate for
embedded systems are removed from EC+-+, e. g., templates, exception handling, and
multiple inheritance are not supported. By the removal of these significant C++ fea-
tures, EC+-+ comes closer to the C language. Hence, we evaluate a different approach
on EC++ and define it in multiple respects based on C instead of C++. Firstly, we
give the definition of an alternative EC+-+ grammar in an analogous way to the one
accompanied by the official EC++ specification. Secondly, we define and examine
the functional differences and incompatibilities between C and EC-++. Thirdly, we
analyze the extent of an alternative formal specification. Our intention to create such
a specification in the same manner as the official one emerged as unmanageable. We
partially create such a EC++ specification based on C and observe that it is not pos-
sible to define it in a feasible way. We apply different metrics to quantify the extent of
both the official and the alternative EC++- specification and come to the conclusion,
that the extent of such a specification will be magnitudes larger than the original.
Thus, both the creation and the use of a EC++ specification based on C are not
sensible.

Most existing EC-++ compilers are restricted C+-+ compilers. We took a different
approach and implemented a EC++ compiler by extending a C compiler. We describe
what modifications and extensions must be injected into the C compiler to resolve
incompatibilities and to insert the new functionality of EC+-+. We use metrics to
quantify the effort of the implementation and evaluate the required work to upgrade
an existing C compiler to support EC++ to be moderate. We also use a metric to
determine the complexity of the implementation. This reveals functions with high
complexity, which are harder to understand, test, and maintain. We identify those
functions as candidates for future restructuring.

il

v

Contents

1 Introduction 1
2 Specification of EC++ 5
2.1 Official Specification of EC++ based on C++4t 5

2.2 Specification of EC++ based on C i i 7

2.2.1 Functional Differences between C and EC++ 7

2.2.2 Grammar of EC++ basedon C...............l 11

2.2.3 Formal Specification of EC++ based on C....................... 11

2.3 Summary of Differences between C, EC++ and C++.................. 13

3 Extending a C Compiler to Support EC4++ 17
3.1 Compiler Phases of vbee ... oo 17

3.2 Implementation Details............ .. i 19

3.2.1 Name Mangling. ... 19

3.2.2 Method Calls.........o i e 20

3.2.3 Pointer COnVerSiOnuuet et i 24

3.3 Features not implemented 27

3.3.1 References 27

3.3.2 User—defined Operators...........cooiiiiiiieiiiiiiiieaanns 27

4 Metrics 29
4.1 Specification Analysis ... 29
4.1.1 Complexity of the Grammars, 29

4.1.2 Textual Extento 31

4.1.3 Alpha Metricso 32

4.2 Implementation Analysis....... i 36
4.2.1 Extent of the Source Code............. i, 36

4.2.2 Program S1Ze e 37

4.2.3 Cyclomatic Complexity 37

4.2.4 Comparison of the GNU C and C+-+ Compilers.................. 39

4.2.5 ConcluSionuuiti i 40

Contents

W > N o O

vi

Related Work
Future Work

Conclusion

Specification of EC++4 based on ISO C99

Lexical Grammar

B.1

B.2

Lexical Grammar i
B.1.1Lexical Elements
Bl 2 Keywords.o
B.1.3Identifiers i
B.1.4 Universal Character Names.............. i ..
B.1.5Constantsoooiiiii
B.1.6String Literals...... ...
B.l.7Punctuators
B.1.8Header Nameso
B.1.9 Preprocessing Numbers........... i i
Phrase Structure Grammar............ttt
B2 L EXPressions.t
B.2.2Declarations
B.2.3Statements
B.2.4 External Definitions
B.2.5 Preprocessing Directives
B.2.6Classes . . oo
B.2.7Derived ClasSes.
B.2.8 Special Member Functions................... L.
B.2.90verloadingo

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Relationship between C, EC++, and C++. 3
Compiler phases. 18
Declaration and call of a static method. 21
Declaration and call of a non—virtual method. 22
Different behavior of virtual and non—virtual methods. 23
Virtual table creation and initialization. 23
Virtual table creation and initialization in a derived class. 24
Dynamic call of a virtual method. 25
Static call of a virtual method. 25
Dynamic call of a virtual method on an expression with side effects. . . 26
Pointer conversion. 26
Categorization of the rules of the official EC++ grammar. 30
Categorization of the rules of the C-based EC++ grammar. 31
Portions of the Brownian walks of the C, EC++, and C++ specification. 33
Random input; « =0.496. 34
C++ specification; a =0.660. 34
C specification; a = 0.648. 35
Official EC++ specification; a« =0.609. 35

vil

List of Figures

viil

List of Tables

2.1
2.2

3.1

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

Summary of differences between C, EC++ and C++. 14
Summary of incompatibilities between C, EC++ and C++. 15
Name mangling scheme used for vbee. 20
Alpha values of the C+-+, C and EC++ specifications. 33
Lines of code added to vbee.o 36
Sizes of the vbce program with and without EC++ support and using

different compiler options.o 37
Cyclomatic complexity [8].o 38
Cyclomatic numbers (M) of the vbee functions most edited. 38
Cyclomatic numbers (M) of the functions new for EC++4. 39
Sizes of the GNU C and C++ compilers. 40
Sizes of the sources of the GNU C and C++ compilers. 40

X

List of Tables

1. Introduction

An embedded system is described on Wikipedia as “a special-purpose system, in which
the computer is completely encapsulated by the device it controls” [41]. Embedded sys-
tems are used in various different environments and utilized in many modern devices.
The most prominent usage areas include household devices, vehicles, entertainment
electronics, and mobile communication devices.

The microprocessors employed in these devices make up a big market share. In
fact, about 98% of all 32-bit processors are used in embedded systems and not in
PCs [38]. The market for embedded systems is big and is growing steadily. The
worldwide chip market is to grow by 8% in 2006 and by 10.6% in 2007 [49]. Embedded
systems are employed in special-purpose environments; general-purpose PCs, on the
contrary, must be flexible to perform many different tasks. Naturally, requirements
for embedded systems differ from those for PCs. Typical requirements for embedded
systems are reliability, meeting real-time constraints, and low price because of mass—
production [41].

To meet these requirements, also the demands on the programming language used
to program such systems differ from those for PC applications. Major demands are
efficient memory usage and small program size. Since savings in these two areas
often lead to lower costs, it is important for a programming language not to impose
unnecessary or unwanted overhead (so—called code bloat).

What is the best fitting programming language, depends on the application of the
embedded system. In many cases, low—level assembly languages are used to program
embedded systems. Such languages give direct control over the resulting machine
code and thus enable the programmer to write highly efficient software. When the
programming task is small and of little complexity, there often is no need for a high—
level language. The use of a high—level language with more abstraction capabilities
can yield many advantages, which include better portability, reusability, and of course
easier management of complex systems |5]. Programming in high-level languages also
is less error—prone than assembly programming.

Probably the most commonly used high—level programming language for embed-
ded systems is C. This is due to C being well understood, having little potential to
create overhead, and good C compilers being widely available. C++, which offers
even more abstraction mechanisms—by object—oriented, generic programming, and
metaprogramming [43]—is also often used for embedded systems programming. How-
ever, some of C++’s language features are less appropriate for embedded systems. For
example, when using template features without care, the program size can increase

1. Introduction

immensely. Another example: when exception handling is used, asserting real-time
constraints can become difficult [28].

The EC++ (Embedded C+-+) language [13] is especially designed to meet the re-
quirements of embedded systems. It is derived from C++ and removes features from
C-++ that are less suited for embedded systems programming. Thus, EC++ forms
a proper subset of C+-+. The basic idea when designing EC++ was to create a lan-
guage that offers the object—oriented programming paradigm of C+-, and to remove
the features inappropriate for embedded systems. The most prominent features that
were removed from C+-+ are templates, exception handling, and multiple inheritance.
In addition to the language, there is also a library specified for EC-++-. This thesis
focuses solely on the language, not the library.

Historically, Dennis Ritchie began work on the language called “C” in 1969, many
features of which were derived from a language named “B” by Ken Thompson. By
1978 Ritchie and Brian Kernighan published the first edition of “The C Programming
Language” 22|, which served as the first informal specification of C—this version of
C is commonly referred to as “Kernighan and Ritchie C” or as “K&R C”. In 1979,
Bjarne Stroustrup began work on a language extending C, which was called “C with
classes” at the time, 1983 its name was changed into “C+-+". In 1989, the American
National Standards Institute (ANSI) completed a standard of C, which with minor
modifications was also adopted by the International Organization for Standardization
(ISO) as ISO/IEC 9899:1989 18], commonly referred to as “C89” and “C90”. Over the
years, many new features found their way into C++ and in 1998 a joint ANSI-ISO
committee ratified a standardized C++ as ISO/IEC 14882:1998 [20]. Throughout
this thesis, when we refer to C++, we refer to this standard. A new revision of the
C standard was released in 1999 as ISO/IEC 9899:1999 |21] and was adopted as an
ANSI standard in 2000. When we use the name C, we actually mean C as specified
in the C99 standard.

Since 1979, C and C++ have evolved independently. Changes and new features
were introduced in both languages. C adopted some features from C++ and vice
versa. Also, incompatibilities between the two languages came up. Figure 1.1 views
the three languages as sets and depicts common functionality, where the sets overlap.
The gradient between C and EC++ symbolizes the incompatibilities between C and
EC++, which are also incompatibilities between C and C-++-.

In this thesis, we investigate the issues of an alternative EC++ specification based
on C rather than C++. We show, what parts of C have to be removed, which incom-
patibilities have to be resolved, and which features of C++ have to be added. Our
initial intention was also to create a formal alternative specification based on C using
the same style as the official specification does. However, this specification has shown
to be too complex to be created in a sensible way. Most available EC++ compilers
are stripped—-down C-++ compilers. In this thesis, we also examine the steps required
to upgrade a C compiler to compile EC++. We also implemented this functionality
into an existing C compiler. Then, we compare the official with the alternative spec-

Figure 1.1.: Relationship between C, EC++, and C+-+.

ification using metrics to quantify the extent and complexity. We also use metrics to
determine the complexity of the implementation if EC++ based on a C compiler.

In Chapter 2 we first present the specification of EC++ as it is officially defined,
based on C++. Afterwards we give an alternative specification, based on C. In Chap-
ter 3 we extend an existing C compiler to also support EC++, and describe the
required steps to do so. In Chapter 4 we quantify and compare the extent of the
two alternative specifications and also the effort required to extend the C compiler to
support EC++. In Chapter 5 we have a look at related work. Chapter 6 lists some
topics for future work and in Chapter 7 we give a conclusion of the thesis.

1. Introduction

2. Specification of EC++

In Section 2.1 of this chapter we will present the official EC-++ specification which is
based on C-++-. In Section 2.2 we will look into what is necessary to specify EC+-+ not
based on C+-+, but on C. Many adjustments of the specification are required and we
will examine some in greater detail. Then we investigate the extent and complexity
of defining a formal specification of EC++ based on C. Concluding we will give a
summary of the differences between C and EC-++ in Section 2.3.

2.1. Official Specification of EC++ based on C++4

The official Embedded C++ specification [13] is defined by the Embedded C+-+ Tech-
nical Committee. The committee basically is a collaboration of Asian companies. Its
most important members are Fujitsu, Motorola, NEC and Toshiba. The most recent
version is WP-AM-003, which was released in October 1999.

The objective of EC++ as stated by the committee is to “provide embedded sys-
tems programmers with a subset of C+-+ that is easy for the average C programmer
to understand and use”, to “retain the major advantages of C+-+”, and to “fulfill the
particular requirements of embedded systems designs”, as well as to “make the speci-
fication as small as possible while retaining the object—oriented features” [11].

The EC++ specification is defined as a list of differences to the C+-+ specifica-
tion [20], rather than a document to be read for itself. Almost all of the differences
are brief instructions to omit a chapter, paragraph, subparagraph, or footnote from
the C++ specification. It defines the EC++ language as well as the EC++ library.
However, in this thesis we will only be concerned with the language specification.

With embedded systems and their small memory capabilities being the target plat-
form, features that unavoidably or potentially introduce overheads are candidates to
be omitted from EC++. As well, features that are difficult to use sensibly for a pro-
grammer having only experience in C, are candidates for removal. The following list
gives brief descriptions of the features omitted from C++ as described in the EC++
Rationale [11]:

e Mutable specifiers are used to declare a class member mutable , which allows
that member to change its value, even when the class object is declared as
const . Especially for embedded systems, it is important to be able to decide
whether an object is really constant and thus can safely be put into ROM. Since

2. Specification of EC++

the mutable specifier might confuse an embedded systems programmer, it is
excluded from the EC+-+ specification.

e Exception handling enables more elaborate handling of errors by the concept
of throwing and catching exceptions. When an exception is thrown, the stack
is unwound until an appropriate exception handler is found that catches the
exception. In C, errors are usually signaled by the return value of functions.
However, besides having more control when dealing with errors, there are also
some drawbacks, especially for embedded systems programming. It is difficult to
determine the runtime and memory consumption when using exception handling.
Also the program size increases when exception handling is used. Therefore,
exception handling is excluded from in the EC++ specification.

e Runtime type information (RTTI) allows to determine the exact type of an in-
stance at runtime by using the typeid keyword. Casting using dynamic_cast
also makes use of RTTI. Using these facilities is useful in programs that make
heavy use of polymorphism. However, RTTI unavoidably introduces some over-
head. The overhead and embedded systems programs typically making little use
of RTTI (because they are usually small) are the reasons, why RTTT is excluded
from the EC+-+ specification.

e Namespaces create contexts for identifiers and thus allow using the same iden-
tifier in different namespaces. This is especially useful in large—scale programs
to structure the code and to avoid name clashes. Due to the target proces-
sors of EC++ having little memory, programs are usually not very large and
name conflicts rarely occur. Hence, namespaces are excluded from the EC++
specification.

e Templates enable generic programming. They are a very powerful language tool,
especially when used along with inheritance and operator overloading. Templates
do not necessarily introduce overhead. However, when used carelessly, program
size can increase dramatically. Using templates efficiently requires a high level
of experience. Learning to use templates well will require a large of amount of
time for the average C programmer. For these reasons, templates are excluded
from the EC+-+ specification.

e Multiple inheritance and virtual inheritance appropriately can lead to expres-
sive and elegant class hierarchies. However, designing such hierarchies is difficult
even for expert programmers in that field. Programs that use only single inher-
itance tend to be more understandable, readable, and maintainable. Virtual
inheritance only makes sense in association with multiple inheritance. There-
fore, multiple inheritance and virtual inheritance are excluded from the EC++
specification.

2.2. Specification of EC++ based on C

2.2. Specification of EC+4++ based on C

One objective of this thesis is to propose a specification of EC++ based on C. Since
EC++ removes large portions from C++, it shifts further towards the C language
specification. At first glance, it seems possible to define an alternative specification for
EC++ based on C rather than C-++-. However, creating such a differential specification
on the same level— i.e., a list of all textual changes needed for the specification—as
the original specification has shown to become unmanageable.

In Section 2.2.1 we present the differences between C and EC++ from a functional
point of view. In Chapter 2.2.2 we introduce an alternative grammar for EC++ based
on the C grammar and in Section 2.2.3 we investigate the complexity of a formal
specification of EC++ based on C.

2.2.1. Functional Differences between C and EC++

In this section, we will examine the different functionalities and the incompatibilities
between C and EC+-+. With additional functionality we denote that one language
allows certain constructs, which result in an error in the other language. Incompati-
bilities are constructs that are legal in both languages, but result in different behavior.
In this sense, EC++ and C++ are compatible and the incompatibilities between C
and C+-+ are the same as between EC++ and C++. The additional functionality
of C is also the same when compared to either C+-+ or EC+-+. Stroustrup describes
some incompatibilities between C and C+-+, mainly meant as an aid for programmers
to write more portable code [29]. A more comprehensive list is given by Tribble, who
presents a list of 48 differences between C and C++ [37]. The differences shown in
both sources do not cover the new features of C++ compared to C. The differences be-
tween C and EC++ can be organized into three categories. Exemplarily, we present
some issues from each category. For a summary of all differences, see Section 2.3.
These are the three categories:

e Functionality of EC++ not present in C (Section 2.2.1.1)
e Functionality of C not present in EC-++ (Section 2.2.1.2)

e Incompatibilities between C and EC++ (Section 2.2.1.3)

2.2.1.1. Functionality of EC++ not present in C

We will give a brief overview of some of the additional features of EC++ when com-
pared to C. An extensive discussion of these features is beyond the scope of this thesis,
see [29] for more detailed descriptions.

2. Specification of EC++

Classes together with their associated
features form the foundation of object—
oriented programming in EC++. Ad-
ditionally to data members, classes (or
structures) can contain methods, inherit
from other classes, control component
access and have friends. In C, structures
lack that additional functionality.

User—defined operators allow further
customization of classes in EC+-+. Op-
erators have a behavior defined by the
language for its built-in types. User—
defined operators allow to define the
semantics of operators for user—defined
types. In C, operators are only allowed
to be used on the built—in types.

Overloading allows the definition of
multiple functions with the same name
but different parameters. When an over-
loaded function is called, disambiguation
rules are used to determine which in-
stance of the function to call. The se-
lection is done at compile time. C does
not allow multiple definitions using the
same name.

Empty structures are structure decla-
rations with an empty body and are not
allowed in C. In EC+-+ however, such
structures can legally be declared.

class cursor {
int x,y;
public:
int getxX(); int gety(Q;

class MouseCursor : public Cursor {
bool buttonState;

public:
bool getButtonstate();

struct Address {
int number;
char name[32];

bool operator>(Address& a) {
return number > a.number;

1

int square(int a) {
return a¥*a;

float square(float a) {
return a*a;

struct A {
};

2.2. Specification of EC++ based on C

2.2.1.2. Functionality of C not present in EC++

In this section, we will present some of the additional features of C when compared
to EC++. These are features, which C supports and that will result in errors when
used in EC++.

Variable—length arrays (VLAs) were
introduced in C99. VLAs are arrays of
variable size that are allocated on the
stack, so the expression defining the size

does not have to be a compile—time con- [void f(int X {)
stant. VLAs can also be used as func- 1/7t arr[x];

tion parameters, allowing a variable ex-

pression as array size or [*] for un- void f(int n, float a[n]);

speciﬁed_ array size. Dge tg VLASs, the void gCint a[*]);

way a Sizeof expression is evaluated \ J

changes, since it does not always result
in a constant value. EC+-+ does not
support VLAs: array sizes are required
to be specified by constant expressions.

Designated initializers are also a new N
feature of C99. They allow initialization Stgﬁitnﬁgggﬁfs {
of specific components in structures and char name[32];
unions using the components’ name. Ini- ;
tialization of arrays can be specified us- Stfﬁﬁ,ﬁbégdiezgf =1
ing the subscript. EC++ does not sup- _-hame = "test”
port designated initializers. Thus, struc- '
e o . struct Address b[] = {
ture initializers must follow the order, in [6] = { .number = 8128 1},
which its components are declared and o8] = e er :P%gr,},’
array initializers begin at the first ele- | 13)
ment.
'd ™

Compound literals were also intro- struct Address {
duced in C99. Additionally to the spec- iﬂgr”gfg;gﬁz];
ification of literals of primitive types, ¥

compound literals allow the specification 381-3 SE?EE‘ESE)‘;‘ddre“) ;
of structures and array types in constant void h(void) {
expressions. This is not supported in
EC++. However, comparable function-
ality can be achieved using constructors
in EC+-+. N /

f((struct Address){496, “test”});
) g((int[2]1){6,28});

2. Specification of EC++

2.2.1.3. Incompatibilities between C and EC++

In this section, we will show some of the incompatibilities between C and EC+-+.
These are issues, where constructs are allowed in both C and EC+-, but result in
different behavior.

Function name mangling is the process that generates a unique symbolic
name for a function or variable. In C, identifiers are used directly as symbolic
names. However, in EC++ this is insufficient because member functions of dif-
ferent classes can have the same name and because of function and operator
overloading. Therefore, C and EC+-+ will in general produce different symbolic
names. How the mangling is to be done is not defined in the EC++ specifica-
tion but is left to the compiler implementation. To be able to call a function
compiled by a C compiler from EC++, that function must be declared with an
appropriate linkage specification using extern “C” . This tells the compiler,
not to mangle the name of that function, but to use the C naming conventions.
Linkage specification is an additional feature of EC+-, which is not allowed in

C.
Character literals have different types

in C and EC++. In C’a is of type , \
int , whereas it is of type char in | void f(void) {

EC++. This can lead to incompatible if(sizeof('a’)==sizeof (int))

code when using Sizeof expressions. _ pm_ntf(s _

In the improbable case, that an imple- 1féﬂﬁi‘%‘gﬁég;ﬁ;i‘Ze°f(Char))
mentation uses the same sizes for char L)
and int , these problems do not show

up.

Empty parameter lists have different

meanings in C and EC++. A func-

tion declaration with no parameters in void fO;

EC++ declares a function that expects void g(void) {

no arguments. In C, it declares a func- £06.28): // ok in C

tion with unspecified parameters. A dec-) // not ok in EC++

laration with void as the only parame-
ter declares a function with no parame-
ters in both languages.

10

2.2. Specification of EC++ based on C

Nested structure tags show different 2
behavior in C and EC++. In C, astruc- | STucE R Lo ooy b,
enum E { ENTRY1 } e;

ture, union, or enumeration declared
within a structure declaration has global

struct B c; // visible in C

scope. In EC-++, these have class scope. // not visible in EC++
Therefore, in C, those declarations are enum E f; // visible in C

visible at global scope, but are not visi- // not visible in EC++

ble in EC++. S ’

2.2.2. Grammar of EC+4+ based on C

Each of the three languages (C, EC++, and C++) provides, along with their spec-
ifications, a grammar that accepts the associated language. These are context—free
grammars and are given in Backus—Naur form [3|. The grammars actually accept su-
persets of the associated languages. This means, that all legal programs are accepted,
but also programs that are incorrect (i.e., ones that violate semantic rules) may be
accepted. Accepted programs are said to be syntactically correct.

The Embedded C++ Technical Committee presents a grammar for the EC++ lan-
guage [12|. This grammar is defined differential to the C++ grammar as given in the
C-++ specification. No new rules are introduced, only existing rules are completely or
partially removed.

We created a grammar in an analogous way, which is based on the C grammar.
This requires not only deletion, but also alteration and insertion of rules and symbols.
We paid attention to keep the differences small. As much as possible, we inserted the
rules for the additional EC++ features from the official EC++ specification without
change. In some cases, replacing some rules completely with the ones from the official
EC++ grammar was sensible. For example, the rules that describe structure decla-
rations were removed and replaced with the rules of the official EC++ grammar that
cover classes, inheritance, members, access control, etc. This approach—compared
to adjusting and extending the existing rules for structures—led to a much clearer
grammar. Appendix B shows the resulting grammar. Note that this grammar and the
one defined by the EC++ committee do not accept exactly the same languages, but
both accept supersets of the EC++ language. Syntactically correct programs that do
not respect the EC+-+ semantics are rejected by the semantic analysis.

2.2.3. Formal Specification of EC++ based on C

One intention of this thesis is to produce an alternative formal specification of EC-++,
based on C instead of C++. The way it is written should follow the one used in the
official specification: a complete list of all textual differences, that need to be applied
on the underlying specification.

11

2. Specification of EC++

However, the task of creating such a specification has shown to be hardly manage-
able. The way in which the official specification is written, is unsuitable for the new
one. In the official EC++ specification, all differences are short statements, almost
always to omit a certain phrase, paragraph or chapter. However, when the basis is C,
many alterations and insertions are required.

To get a better picture of the extent of the alternative specification, we took one
section from the C specification (section “6.5.2.2 Function calls”), for which there is a
closely corresponding section in the C++ /EC++ specification (section “5.2.2 Function
call”). For that section, we wrote a list of differences in the same way as the official
EC++ specification is written (see Appendix A).

The result of our effort is a differential specification that is just as long as the source
section and that quotes large portions from the EC+-+ specification. Note that the
additional information quoted from the EC+-+ specification is not from a chapter
respective to the new features of EC++. An issue that we did not address is fitting
the references of the quoted EC++ text, since we have no corresponding information
in the example. This section is just about 2 pages long, so this should only be used to
get an impression. There are sections for which less adjustment will be necessary, but
there are also sections that will be much harder to adjust. For example, sections that
do not even have such a clear correspondence in the EC-++ specification will make
adjustment more complicated.

In fact, about one third of all paragraphs in the C specification are not correct for
EC++ and must be adjusted, replaced, or removed. The remaining paragraphs also
need editing because of either incompatibilities or the additional EC++ functional-
ity. The new EC++ features are defined in the C+- specification. Issues concerning
those new features are not only found in their respective chapters, but are also spread
throughout the whole document. Taking this information and extending the C spec-
ification with it, is not sensibly manageable. Only very little of the C specification
could remain as is. Essentially, it is comparable to replacing the C specification with
the C++ specification or to writing an entirely new specification.

We estimate the extent of the alternative EC+-+ specification based on C to be
comparable to that of the whole C specification (150-200 pages). In comparison, the
official specification fits on 18 pages. So the alternative specification would also be
inferior to the original concerning readability and understandability. For specifications
in general, completeness, and correctness are essential, which are at least difficult to
assert.

12

2.3. Summary of Differences between C, EC++ and C++

2.3. Summary of Differences between C, EC++ and
CH++

In this section, we present two tables, which summarize the differences between C,
EC++, and C++. Table 2.1 shows the differences in supported features between
the three languages. Some of these are described in Sections 2.1 and 2.2.1. Table 2.2
summarizes the incompatibilities between C and EC++ and between EC++ and C++.
With C++ being a proper superset of EC+-+, there are no incompatibilities between
these languages. Some of these issues were described in Section 2.2.1.3. Also see |29,
37| for more extensive descriptions of the features and incompatibilities mentioned.

13

2. Specification of EC++

Feature \ \ EC++ \ C++ ‘

O

Exception handling

Multiple inheritance

Namespaces

Runtime type information (RTTI)
Templates

Virtual inheritance

Aggregate initializers

Alternate punctuation spellings
Anonymous unions

Boolean type

Classes

Conditional expression declarations
Default arguments

Empty structures

Function and operator overloading
Functions returning void

new and delete

References

User—defined operators

Compound literals

Designated initializers

Dynamic sizeof evaluation
Enumeration constants

Flexible array members
Hexadecimal floating—point literals
IEC 60559 arithmetic support
long long integer type
Non-—prototype function declarations
pragma keyword

Predefined identifiers (__func__)
restrict keyword
Variable—argument preprocessor function macros
Variable-length arrays

OO00Ooo0OOooOoOooOoooOooOooogogooooooOooooooo g oo o)
Oo0OoOoooogooooooogooo o ooououUu oo oo g o
OOoOoooooooooooo.ogOaoooooogogg oo oo ogd

Table 2.1.: Summary of differences between C, EC++ and C++.

14

2.3. Summary of Differences between C, EC++ and C++

[Feature [C o EC++ [EC++ o Ct+ |
Character literals H O
Comma operator results - il
const linkage ¢ [
Duplicate type definitions s O
Empty parameter lists s O
Empty preprocessor function macro arguments s il
Enumeration declarations with trailing comma s [
Enumeration types 7 0
Function name mangling s U
Function pointers s O
Inline functions s [
Keywords s [
Nested structure tags s [
One definition rule 7 N
static linkage s O
String initializers s [
String literals are const s [
Structures declared in function prototypes s 0
Type definitions versus type tags s [
Variable-argument function declarators s 0
void pointer assignments s [

Table 2.2.: Summary of incompatibilities between C, EC++ and C++.

15

2. Specification of EC++

16

3. Extending a C Compiler to
Support EC++

In this chapter we will discuss what is necessary to upgrade an existing C compiler
to compile EC++ code in addition to C code. The C compiler we chose for this task
is vbee [4]. Tt is a highly optimizing, portable, and retargetable ISO C compiler. Tt
supports ISO C according to C89 and a subset of the new features of C99. However, we
pretend that we are upgrading a fully C99 compliant compiler. Actually, vbee includes
all features from C99 that are also allowed in EC++. Only new features of C99 that
are not allowed in EC++ need to additionally be removed from a full C99 compliant
compiler; for vbee no change is needed, since those features are not supported in the
first place. We focus solely on issues concerning the EC-++ language, not the EC-++
library.

3.1. Compiler Phases of vbcc

The processing that a source file undergoes in the compiler until the assembler code
is produced can be partitioned into different compiler phases (see Figure 3.1). Such
an organization is used by most compilers for any language and is documented in
many books and papers about compiler construction, e.g., |2, 48, 6]. In the actual
implementation the phases are not as cleanly separated as depicted in the figure, e.g.,
in the case of vbce the preprocessing and lexical analysis phase are performed in the
same step. The front end and back end however, can clearly be distinguished. The
front end eventually generates intermediate code, which is optimized and then fed to
the back end. The vbce back ends are exchangeable and they are available for different
platforms.

The preprocessor and lexer module reads from the source file and splits it into a
stream of tokens. A token is an atomic unit of the language, e.g., keyword, identifier,
constant, operator, parenthesis, etc. The input is scanned just in time, which means
that only when the parser requires the next token, the lexical analysis of the source file
progresses and returns the next token to the parser. The vbce compiler uses a recursive
descent parser [1] to recognize the structure of the stream. Thus, the parser essentially
is a set of functions which closely reflect the rules in the grammar. The parser triggers
semantic analysis and intermediate code generation when appropriate. For example,
when the input is an expression, the parser creates an Abstract Syntax Tree (AST)

17

3. Extending a C Compiler to Support EC++

{ Source File]

r

M) e A
Front End Back End
4
') ')
Preprocessing Optimization
4 * N\ 4 * \
Lexical Analysis Middle End Code Generation
\. J \. J
'4 * N\ ' '4 * N\
Syntactic Analysis [Optimization J Assembler Code
. vy \. vy
) Y . .)
Semantic Analysis - / ~N
> v g Assembler
Intermediate Code ~ " <
o [Object File]

Figure 3.1.: Compiler phases.

for that expression and afterwards triggers semantic analysis to attribute the AST of
the current expression. Then, intermediate code generation for the attributed AST is
called and thereafter parsing continues with the next statement of the input.

What follows is an overview of the modifications that have to be applied in each

specific phase.

18

e Preprocessing phase

Minor modifications have to be applied concerning the preprocessor, mostly to
remove additional functionality from C. For example, C supports function macros
with a variable number of arguments, EC+-+ does not allow this.

Lexical analysis phase

Aside from some minor modifications of removing some C functionality (e.g.,
universal character names), the set of accepted keywords also has to be adjusted.
Note that the keywords that are used for C+-+ functionality that is not part of
EC++ are still reserved. New tokens also are: “->=*7 “.x” and “:: 7.

Syntactic analysis phase

The parser has to be modified to accept all of the EC+-+ constructs. This
includes method and user—defined operator declarations and definitions, base
class specifiers, nested name specifiers, etc.

3.2. Implementation Details

e Semantic analysis phase
Besides additionally having to process EC++ constructs, semantic analysis has
to be modified to address numerous other EC-++ specific issues, e.g., method
calls, pointers to methods, casting of pointers, calls of user—defined operators
and references. Some of these cases are discussed in depth in Section 3.2.

e Intermediate code and subsequent phases
No additional functionality is required for the intermediate code, hence no mod-
ifications on the intermediate code generation phase and subsequent phases are
necessary. All of the optimizations that may be applied for C may also be ap-
plied to EC++. However, there are additional optimizations that are applicable
for EC++. Some optimizations that are planned for future versions of vbecc are
described in Chapter 6.

3.2. Implementation Details

In this section we will discuss some of the implementation issues of EC++ in depth.
It is not a complete list of all changes required to upgrade a C to an EC++ compiler.
The basic concept, we use is to reduce the new EC-+-+ constructs to equivalent C
constructs. This is essentially the same approach that Cfront [39] uses. Cfront was
the original compiler for C+-+, which converted C+-+ to C. In contrast to Cfront, we
do not generate C code, but perform the transformations from EC++ to C constructs
in vbee’s internal data structures. Note that not all EC+-+ features have been imple-
mented and thus are not discussed in this section. See Section 3.3 for a discussion of
the missing features.

3.2.1. Name Mangling

In EC++, different functions and methods are allowed to have the same identifier
if they are declared in different scopes or if their parameters differ as required for
overloading. So, a unique, symbolic name has to be created, that is used to refer to
the specific function instance. Symbolic names must also be created for user—defined
operator functions. This is not required for variables, since different variables (of
different type) are not allowed to use the same identifier. The process of creating
the symbolic name is called name mangling. In C, this is not an issue, since neither
methods nor functions that have the same identifiers are allowed. How to create
the mangled names is not defined in the EC++ specification but is implementation
dependent.

For vbee we chose the mangling scheme defined by Intel in the Itanium-64 ABI [9].
The GNU Compiler Collection [14] also uses this method in version 3.x and 4.x. In
this scheme, mangled variable names are the same as their plain name. Mangled

19

3. Extending a C Compiler to Support EC++

| EC++ Code | Mangled Name |
int x; X
void f(); _Z1fv
int g(int,float,double); _Z1gifd
void hh(int #=); _Z2hhPPPi
struct A {
int f(double); _ZN1AlfEd
static int abc(float); _ZN1A3abcEf
I3
void abc(A); _Z3abcN1AE
typedef int (func)(double);
void f(func); _Z1fPFIidE

Table 3.1.: Name mangling scheme used for vbcc.

names of functions and methods have a prefix of _Z followed by their encoded scope,
identifier, and parameters. Names of scopes and identifiers are mangled as their plain
names prefixed with their length. Scoped names additionally have a N prepended
and an E appended, e. g., 1f , 3abc , NSthese3are7encoded6scopes3varkE , etc.
Parameters are encoded according to their type, e.g., int is encoded as i , pointer
to double as Pd. For a full specification, see [9]. Note that neither specifiers such
as static or virtual |, nor the implicit this pointer are encoded in the mangled
name. Table 3.1 shows some examples of this method. The EC+ -+ specification forbids
user—declared variables to have a _Z prefix, thus name clashes are avoided.

For better readability, we will use a simpler scheme in the examples shown below.
For example, the method f of class A receives the mangled name A _f.

3.2.2. Method Calls

A function declared inside a class or struct declaration is called a method. In C,
function declarations inside structures are not allowed. The behavior of methods is
defined in the EC+-+ specification, but how to realize it is left to compiler implemen-
tation. In the implementation for vbee we used what is probably the method used
most commonly by compilers. This method is described in many books about compiler
construction for object—oriented languages, e.g., |2, 48|.

All methods are compiled as global functions. When a method is called, the syn-
tactic analysis transforms that call expression into the appropriate AST nodes in the
same way as an ordinary function call would be transformed. That the expression is
a method call is detected during the semantic analysis of the method identifier node.
Then the specific method to be called is determined following the scoping and over-
loading rules. Afterwards, it must be checked if the access rules allow calling that

20

3.2. Implementation Details

e N\ [“
EC++ C
Declaration Declaration
e 3\ r A
struct A { struct A {
int x; int x;
static void f(int a); > };
’ void A_f(int a);
\. J . J/
Call Call
s ~ e N\
A::f(28); A_f(28);
GALL)
(A::f 28 Af (28)
\. J _ J
. J \ J

Figure 3.2.: Declaration and call of a static method.

method from the current context. All method calls can be transformed into C compli-
ant function calls. This principle is used to transform the AST representing a method
call into an equivalent AST containing only C compliant constructs. Two different
kinds of calls can be distinguished. If the function to be called can be determined at
compile-time, it is a static call. If the actual function to call must be determined at
runtime, it is called a dynamic call. Dynamic calls are used for virtual functions.

The names of these function are mangled as specified in [9], but in the figures we
will use the simpler scheme, as said in Section 3.2.1. The following figures containing
examples will show the original EC+-+ source code as written by the programmer,
the equivalent C code, the AST as it is before the transformation and the AST after
transformation.

3.2.2.1. Static method calls

The declaration of the static method is internally transformed into a declaration of a
global function using the mangled name and having the same parameters and return
type. A call to a static method is transformed into a static call of the according
function, the arguments to the function/method remain unchanged. Thus, static
methods may be mapped to global functions in a straightforward way. See Figure 3.2.

3.2.2.2. Non—virtual method calls

When a non—virtual, non—static method is defined, internally, a global function with
the mangled name is defined. In addition, that function receives the implicit this

pointer as its first parameter. The user—defined parameters are appended after it.
The this pointer parameter is of type pointer to class, to which the method belongs.

21

3. Extending a C Compiler to Support EC++

e N 4 N
EC++ C
Declaration Declaration
s N s N
struct A { struct A {
int x; int x;
void f(int a); };
’ void A_f(struct A *this,
int a);
. J . J
Call Call
s D s R
struct A a;
A_f(&a,28);
CALL

(af) (&)28)

\ J & J

Figure 3.3.: Declaration and call of a non—virtual method.

When a non—virtual method is about to be called, the AST for the call is transformed
to a static call to the according global function and the implicit this pointer argument
is passed to the function as the first argument (see Figure 3.3). The this pointer
argument can either be explicitly given (e.g., a.f() or ap->f()) or, if the context
is a non—static method, the this pointer of that surrounding method is used.

3.2.2.3. Virtual method calls

Firstly, let us give a brief example of when and how a virtual method call behaves
differently from its non—virtual counterpart (see Figure 3.4). Suppose a class B declares
a method and a derived class D declares a method with the same name and the same
parameters (this method overrides the base class’ method). In EC++, it is allowed
to cast a pointer to a derived class to a pointer to the base class. Further suppose
a method is invoked for a pointer to the base class B, but which actually points to
an instance of the derived class D. If the method was not declared as virtual (f), the
pointer type would determine which function to actually call. So, this would be a
static call of the base class’ method (B::f). On the other hand, if the method was
declared as virtual (g), the method of the concrete object’s type would be called, which
is the derived class’ method (D::g). This is a dynamic call, since the type of object
pointed to must be evaluated at runtime. Virtual methods are always non-static and
also carry an implicit this pointer.

How to achieve this behavior is not defined in the specification but is left for the
compiler implementation. We use the most common approach: using virtual tables.

22

3.2. Implementation Details

struct B {
void f();
virtual void gQ;

struct D : B {
void f();
virtual void gQ;

void test(){
D d;
B *p=&d;

p->f(); // calls B::f()
) p->g(); // calls D::gQ)

\. J

Figure 3.4.: Different behavior of virtual and non—virtual methods.

s N\ ~
EC++ C
Declaration Declaration
s A s p
struct A { struct A {
int x; . . struct A_vtable *vtable;
virtual void f(int a); int x;
virtual void gQ); };

’ :> struct A_vtable {
void(*f) (struct A*,int);
} = {&A_f,&A_g};

void A_f(struct A*,int);
void A_g(struct A%);

\. J \. J

Figure 3.5.: Virtual table creation and initialization.

Descriptions of this method can be found in many compiler books for object—oriented
languages, e.g. |2, 48]. For each class that has virtual methods (either declared in
itself or inherited from a base class), a virtual table is generated. A virtual table is a
constant structure that contains the addresses of all virtual methods for the associated
class. It suffices to create just one instance of a virtual table per class and to have a
pointer in each class instance point to this table. For an example see Figure 3.5. A
derived class inherits all virtual methods of the base class, virtual methods that are
added to the derived class are appended to the table. This way, a method has the
same offset in the virtual table of a derived class as it has in the base class. When
a derived class overrides a virtual method, the appropriate entry in the virtual table
is replaced with the address of the overriding method. The virtual table pointer is
not inherited by derived classes, but replaced with pointers to the virtual table of the
derived class. For an example, see Figure 3.6.

23

3. Extending a C Compiler to Support EC++

e N 4 N
EC++ ©
Declaration Declaration
4 N\ 4 N\
struct B : A { struct B {
virtual void f(int a); struct B_vtable *vtable;
virtual void h(Q); int x;

struct B_vtable {
- void(*f) (struct B¥,int);
void(*g) (struct A*);
void(*h) (struct B*);
} = {&B_f, &A_g, &B_h};

void B_f(struct B*,int);
void B_h(struct B¥*);

\. J \. J

Figure 3.6.: Virtual table creation and initialization in a derived class.

When a virtual method is invoked, the virtual table pointer of the associated instance
is dereferenced. Then the appropriate method address is looked up in that virtual
table, and the function at that address is called (see Figure 3.7).

Performing a dynamic function call compared to a static function call is costly.
It requires two additional pointer dereferencings and makes inlining of that function
difficult. Also, modern processors can benefit from pre—fetching instructions when
jumping to a constant address. Thus, replacing dynamic calls with static calls wher-
ever possible can improve runtime performance significantly. This is possible, when a
method is always called for the same class type. The most common case is, when the
method is called for a concrete instance—rather than for a pointer to instance—, for
an example, see figure 3.8.

Care must be taken when a virtual method is called for an expression that may have
side effects. For example, such side effects may occur, when a function that returns
a pointer to a class type is called in the expression (see Figure 3.9). Transforming
such a construct the same way as shown in Figure 3.7 would invoke the side effects of
h twice—once when the virtual table pointer is looked up and once when the this
pointer is passed. Therefore, a temporary variable must be created and the value of
the expression must be assigned to it. Then that temporary is used for both the lookup
and the this pointer. This way, the expression and its side effects are evaluated only
once.

3.2.3. Pointer Conversion

When casting a pointer to a derived class to a pointer to the base class another issue
must be addressed. Assume, a base class B has no virtual methods, and a class derived
from it (D) has virtual methods (see Figure 3.10). Thus, D must receive a virtual table
pointer as its first component, whereas B must not have such a pointer. When a cast

24

3.2. Implementation Details

Y 'a ™\
EC++ C
Dynamic Call - | Dynamic Call - |
e N e N
A *ap; struct A *ap;
ap->f(28); ap->vtable->f(ap,28);

(struct) (Cap Y 28)
> DEREF @

STRUCT

(perer) (vtable)

\. J . /

Figure 3.7.: Dynamic call of a virtual method.

Y 'a ™\
EC++ C
Static Call Static Call
s ™ e N
A a; struct A a;
A.T(28); A_f(&a,28);

CALL

(af) (&)28)

Figure 3.8.: Static call of a virtual method.

3. Extending a C Compiler to Support EC++

26

EC++
Dynamic Call - Il

C

P
A *h(int);

h(6)->f(28);

Dynamic Call - Il

3 s

struct A *h(int);

struct A *tmp=h(6);
tmp->vtable->f(tmp,28);

i)
CmD) @)

) G
SN CDED)
oerer) ()

STRUCTJ

DEREF) (vtable)
J J

tmp

struct B {
int x;

struct D : B {
virtual void fQ;

B b;

D d;

B *bp = &b;

D *dp = &d;

B *bp2 = dp;

D *dp2 = (D*)bp2;

b
(bp*)‘4~i~(X)
d
(Cdp*)t veable* ya|—(dp2*)
(x N
~)\\(prz*)

Figure 3.10.: Pointer conversion.

3.3. Features not implemented

is performed, the resulting pointer must not point to the virtual table pointer, like it
did before, but to the following component. Therefore, such a cast involves increasing
the address pointed to. Analogously, when casting a pointer to base class without
virtual table down to a pointer to derived class with virtual table, the address must
be decreased.

The special case of casting a null pointer must obey the following rule: a null pointer
value is always converted to a null pointer value of the destination type. In that case,
the address must not be incremented or decremented.

3.3. Features not implemented

We were not able to implement all features of EC+-+ into vbee. This was due to the
limited time available and the implemented features being more involved than initially
expected. We implemented the features in order of importance to enable object—
oriented programming. The implemented features are classes with static, virtual and
usual methods, constructors, destructors, single—inheritance, access control, friends
and overloading. Features that are still missing are references, user—defined operators,
and some incompatibility issues. We estimate the completeness to be about 70%.
In Sections 3.3.1 and 3.3.2 we present how we intend to implement references and
user—defined operators, respectively.

3.3.1. References

Wikipedia defines a reference in the C++ language—whose behavior is not changed
for EC++—as “a simple reference datatype that is less powerful but safer than the
pointer type inherited from C” [46]. The functionality of reference types can be reduced
to C equivalent functionality using pointer types. Hence, the intermediate language
of vbee does not need to be changed to handle references. However, additional type
checking is required by the semantic analysis. For example, the semantics of references
in assignments, as function arguments, as return types, etc. must be verified.

3.3.2. User—defined Operators

As stated in Section 2.2.1.1, EC+-+ allows to define the semantics of operators for
user—defined types. How user-defined operators are compiled is similar to compiling
methods. When a user-defined operator is defined, internally a global function is
defined. The name of that function is mangled as specified in [9].

Operators can either be called explicitly (e.g., a.operator=(b);) or implicitly
(e.g., a=b;). The explicit calls are handled analogous to method calls. Implicit
operator calls must be detected during semantic analysis. Analogously to method
calls, overloading and access rules must be verified.

27

3. Extending a C Compiler to Support EC++

28

4. Metrics

In this chapter, we will discuss different metrics to quantify the size and complexity
of the specifications and the implementation of our EC+-+ compiler. Our goal for
the specifications is to compare the two alternative EC++ specifications and to de-
termine, how sensible and realizable a EC-++ specification based on C is. For the
implementation our objective is to estimate how expensive upgrading a C compiler to
EC++ is and to approximate how much additional work is required for an upgrade
to C++. As in the rest of this thesis, we will focus solely on language issues, and are
not concerned with the runtime libraries.

4.1. Specification Analysis

In this section, we will use metrics to quantify and compare the physical extent of the
two alternative EC++ specifications. Additionally, we will apply a metric to quantify
the functional complexity of the specifications. We compare the sizes of the respective
grammars in Section 4.1.1. In Section 4.1.2, we compare the textual extent of the
official EC-++ specification with the estimated extent of the alternative specification.
Quantifying the functional complexity of a specification is a difficult task. We regarded
alpha metrics as the most suitable metric for this, which we apply in Section 4.1.3.

4.1.1. Complexity of the Grammars

Recall from Section 2.2.2, that along with their specifications, each of the three lan-
guages (C, EC++, and C++) provide a grammar that accepts the associated lan-
guage. For the alternative EC++ specification, we constructed a grammar in the
same manner—but based on C rather than C++—(see Appendix B). The official
EC++ grammar is specified based on C+-+, omitting certain rules or parts of rules.
The alternative grammar is specified in the same way, but in difference to the C gram-
mar. In addition to removing rules, it is also required to introduce new rules and to
extend some.

To compare the official EC+-+ grammar with the alternative EC++ grammar, we
analyze the number of rules and the number of changed rules. Also, we examine the
extent of the grammars they are based on: C++ for the official grammar and C for
the alternative grammar.

29

4. Metrics

EC++ Grammar based on C++
C++ has 205 rules

36 rules

145 rules removed

unmodified

24 rules
modified

= 169 EC++ relevant rules

Figure 4.1.: Categorization of the rules of the official EC++ grammar.

4.1.1.1. Official EC4++ grammar

The C++ grammar consists of 205 rules. The EC++ specification removes 36 of these
completely, because these cover features that not present in EC+-+. Also because of
the functionality removed from C-++, 24 of the remaining rules need to be modified.
What remains are 145 rules that are applicable for EC-++ unaltered. Thus, defining
the EC+-+ grammar in this way requires the 145 unmodified rules and the 24 adjusted
rules, which is a total of 169 rules that are relevant for EC++, as depicted in Figure 4.1.

4.1.1.2. Alternative EC++4 grammar

The C grammar is presented in the C specification as 136 rules. For the definition of
the EC++ grammar based on C, new rules for the additional EC++ features must
be added. 45 new rules are added to the C grammar. Most of these are exactly the
same as in the official EC+-+ grammar or with small adjustments. To fit the new rules
into the base grammar, and to address the incompatibilities between C and EC-++,
27 rules need to be modified and 14 have to be removed. Relevant for this alternative
EC++ grammar are the 96 unmodified C grammar rules, the 27 modified rules, and
the 45 newly introduced rules. In sum, 167 rules are relevant for the alternative EC++
grammar. This composition is depicted in Figure 4.2.

4.1.1.3. Conclusion

We observe that both grammars have approximately the same extent when comparing
the number of rules relevant for EC-++-. To measure the amount that must be changed
compared to the base grammars, we analyze how many unchanged rules of the basis
grammar the EC++ grammars contain. In the alternative grammar, due to many new

30

4.1. Specification Analysis

EC++ grammar based on C99
C99 has 136 rules

96 rules 45 new rules

unmodified

14 rules
removed

27 rules
modified

= 167 EC++ relevant rules

Figure 4.2.: Categorization of the rules of the C-based EC++ grammar.

rules, the unchanged C part makes about 57% of all EC+-+ relevant rules. For the
official grammar, about 86% of the EC++ relevant rules are unchanged rules of the
C-++ grammar. Hence, the extent of both grammars is very much the same, but for
the official version a bigger portion of its basis can be retained, whereas the alternative
grammar needs to introduce a significant amount of changes and new rules. Note that
a grammar for itself has only limited expressiveness and a definition of its semantics is
necessary. The semantics are verified in the semantic analysis phase of the compiler.

4.1.2. Textual Extent

In this section, we will measure the textual extent of the official EC+-+ specification
and estimate the extent of the alternative specification. The metric we use primarily
is the number of paragraphs of the specifications. The average length of paragraphs,
as well as the amount of information per paragraph are comparable in the C and the
C-++ specification. So, measuring the number of paragraphs is suitable. Also, the
official EC++ specification often states to remove specific paragraphs, which can be
measured directly. There are two things we will compare. First, how much of the base
specification is still used in the EC++ specification based on it. Second, the sizes of
the differential EC++ specifications.

4.1.2.1. Official EC4++ Specification

The official EC++ specification is based on the C+-+ specification, which spans 1516
paragraphs. For EC-++, 411 paragraphs are removed from C+-+, resulting in 1105
paragraphs relevant for EC++. About 20% of these need modifications, so about

31

4. Metrics

80% of the EC++ relevant paragraphs are unchanged paragraphs from the C-+-+
specification. The official EC++ specification itself consists of 234 short statements,
e.g. “Because EC++ omits exceptions, a function never has a function try-block.
<2nd par.>".

4.1.2.2. Alternative EC++ Specification

The C specification on which the alternative EC++ specification is based contains
668 paragraphs. To add the additional functionality of EC+-+, the respective sections
from the C++ specification must be added, which span 368 paragraphs, resulting in
1036 paragraphs relevant for EC+-+ so far. However, the information of the new func-
tionality not in the respective C-++ chapters is still missing. As said in Section 2.2.3,
still many new paragraphs must be inserted.

4.1.2.3. Conclusion

It is difficult to compare the two EC++ specifications, since—due to creation of the
alternative specification based on C being impractical—, we can only estimate the
extent of the alternative one. However, as mentioned in Section 2.2.3, we estimate the
extent of the alternative specification to be about 150-200 pages, magnitudes bigger
than the official specification, which fits on 18 pages.

4.1.3. Alpha Metrics

Alpha metrics are used on a specific input text to yield an alpha value, which relates
to the complexity of the text. Alpha metrics are described in [23, 24, 7]. We will
describe how to calculate the alpha value and how to use it to compute the values for
the C, the EC++-, and the C++ specifications. To calculate it, we first have to convert
the text—i.e. the specification—into a string of bits. To do that, each character is
converted into a series of six bits using a code table. The bit string of the whole text
is interpreted as a Brownian walk, where 1 means a step up and 0 means a step down.
Figure 4.3 shows portions of the walks of the C, EC++, and C++ specifications.

The next step requires to determine the long—range correlations of the text. They
are computed using Equations 4.1 and 4.2.

(4.1)

Ay(l) = y(lo +1) — y(lo) (4.2)
Where

F' is the root of mean square fluctuation about the average of displacement,

[is the window size—the distance between two points on the walk,

32

4.1. Specification Analysis

1400

C99 walk
EC++ walk -------- R
Ct+ walk «weeeeeee PP IR

,,,,,,,,,,,,,,

1200

1000

800

600

400

200

0 2000 4000 6000 8000 10000 12000 14000

Figure 4.3.: Portions of the Brownian walks of the C, EC++, and C++ specification.

’ Specification \ Alpha value ‘

C++ 0.660
C 0.648
EC++ 0.609

Table 4.1.: Alpha values of the C++, C and EC++ specifications.

lp is the starting point of the walk,

y(x) is the value of the walk at position z.

We calculate the values of F'(I) for all possible values of [. The highest [values must
be discarded, because the window size is close to the sample size. The function F'(I)
approximately describes a power law, thus

F(l) ~ 1 (4.3)

The power law can be observed most easily, when plotting F'() using double logarith-
mic axes. Then, the alpha value is the slope of the curve. If the string sequence is
uncorrelated, then a ~ 0.5. As an example, we applied the alpha metric on a text of
random characters. Figure 4.4 shows F'(I) for that input. The resulting alpha value is
very close to 0.5. This result is expected, because a random data sequence has small
or no correlations.

We then calculated the alpha values for the C++ specification, the C specification,
and the official EC-++ specification (see Figures 4.5, 4.6, and 4.7). The resulting alpha
values can be seen in the following Table 4.1.

33

4. Metrics

25 9 e

15

log(F(1)

0.5

0 ! ! ! ! !
0 1 2 3 4 5

log(l)

Figure 4.4.: Random input; a = 0.496.

log(F(h)

log(l)

Figure 4.5.: C++ specification; a = 0.660.

34

4.1. Specification Analysis

log(F(h)
N
(6]

log(1)

Figure 4.6.: C specification; a = 0.648.

log(F(h)
N

0 1 2 3 4 5 6
log()

Figure 4.7.: Official EC++ specification; a = 0.609.

35

4. Metrics

’ Subject Locations \ Lines of code ‘
Extensions 67 791
Modifications 21 31
New functions 33 1161

Table 4.2.: Lines of code added to vbce.

The results are approximately the same for all three specifications. However, in [23],
Kokol applies alpha metrics to different but functionally equivalent specifications and
the resulting alpha values are quite different. He concludes “|...] to find out the reasons
much more research will be needed”. Hence, we cannot interpret from the results, that
the three specifications are of comparable functional complexity.

4.2. Implementation Analysis

To estimate the extent and complexity of upgrading a C compiler to support EC-++,
we analyze our implementation regarding how many lines of code we needed to write
(Section 4.2.1), and how the binary size of the compiler changed (Section 4.2.2). In
Section 4.2.3, we further examine the complexity by calculating McCabe’s cyclomatic
complexity and observe, how it is affected by the upgrade. In Section 4.2.4, we compare
the sizes of the GNU C and C-++ compilers in an attempt to quantify the work that
would be necessary to further upgrade an EC-++ compiler to a full C+-+ compiler.

4.2.1. Extent of the Source Code

In this section, we will use the most traditional metric for measuring the size of source
code. This metric is lines of code (LOC). LOCs are non-blank, non-comment lines in
the text of the source code. Thus, before counting we stripped the code of comments
and empty lines. We will evaluate the size of vbee with and without EC+-+ support.
Also, we will categorize the changes applied to the vbcc source code. The three
categories we used are extensions, modifications, and new functions.

e An extension is code that extends the original functionality.

e A modification is code where the original functionality of vbce had to be altered.
These are mostly one—liners that create a branch.

e New functions that have been implemented for EC-++ support.

Table 4.2 shows the number of lines of code added for each category. The locations
column contains how many different locations needed editing for the extensions and
modifications, and number of new functions. So, in total 1983 LOCs were introduced
for the EC++ functionality. Since we estimate the functionality implemented to be

36

4.2. Implementation Analysis

| GCC call [used strip | without EC++ [with EC++ | Relation

gcc 1no 544 kB 581kB +7%
gcc -0O3 no 510kB 540 kB +6%
gcc -Os no 379kB 401 kB +6%
gcc yes 508 kB 544 kB +7%
gcc -O3 yes 476 kB 504 kB +6%
gcc -Os yes 344 kB 364 kB +6%

Table 4.3.: Sizes of the vbcc program with and without EC++ support and using
different compiler options.

about 70%, the modifications for full EC+-+ will be about 2800 LOCs. The source
code of vbee with EC++ support and one back end has about 28000 LOCs. Thus,
the EC++ extension makes up about 7% of the vbee source code and about 10% with
all features implemented.

4.2.2. Program Size

Another metric we applied is the evaluation of the compiled program sizes. For the
compilation of vbce we used the GCC compiler version 3.3.5 with different optimization
settings. We optionally used the UNIX command strip on these executable to
remove the symbol information not required for the execution. Figure 4.3 shows the
results. The increment in size of vbee with EC++ support is very much the same, for
any compiler options used. The usage of strip does significantly affect the program
size, however the relation of vbee with and without EC++ support remains constant.
Considering the EC++ support to be 70% complete, the estimated increase of program
size with full EC++ support is about 9%—10%.

4.2.3. Cyclomatic Complexity

The evaluation of the cyclomatic complexity of a software module was introduced
my McCabe in 1976 |25]. McCabe’s cyclomatic complexity number (M) measures
the number of paths through a software unit. It “is the most widely used member
of a class of static software metrics” [8]. The complexity number correlates to the
understandability, maintainability, and testability of the source code. Calculating M
is a quick way to find functions that are potentially error—prone and that should be
reorganized. McCabe suggests in [26] to avoid functions with M higher than 10 or
to have a good reason for it being that high. In [8], Table 4.4 is presented, which
gives further interpretation of the cyclomatic number M. The cyclomatic complexity
is not a measure for the extent of software, but rather for its quality. We will use it

37

4. Metrics

| Cyclomatic Complexity Number (M) | Risk Evaluation |

1-10 | a simple program, without much risk
11-20 | more complex, moderate risk
21-50 | complex, high risk program
greater than 50 | untestable program (very high risk)

Table 4.4.: Cyclomatic complexity [8].

’ function name \ M without EC++ \ M with EC++ ‘
type_expression2 616 682
var_declaration 266 285
declaration_specifiers 153 262
direct_declarator 7 90

Table 4.5.: Cyclomatic numbers (M) of the vbee functions most edited.

to see how complex the vbcce is without the EC++ extensions and compare it to its
complexity with the EC++ functionality included.

Many of the vbee functions have incredible high values of cyclomatic complexity.
For example, 10 functions have a value higher than 150 and 49 functions have values
higher than 50. Still, the vbcc is a very stable program, but extending functions with
such a high complexity actually has shown to be error-prone and time-consuming.
For comparison, we applied the complexity metric also on the GNU C compiler. The
cyclomatic number here is even higher, 50 functions having an M value higher than
100. Thus, it deems not untypical to have some functions with very high cyclomatic
numbers.

We will analyze the vbee functions that were edited the most for EC++ support, and
see how the modifications affect the value of M. Table 4.5 shows the functions that were
editted the most for the EC+-+ functionality and their complexity with and without
the EC++ functionality. Especially the function declaration_specifiers has
increased much in complexity, and more modularization of the additional functionality
has to be considered. Actually, all four of the functions in Table 4.5 should be reviewed
to be restructured into less complex functions. Note that segmenting a function does
not in general reduce the total complexity, but distributes it.

Secondly, we will apply the cyclomatic complexity metric to the functions newly
introduced for the EC++ functionality. Table 4.6 shows the 33 new functions and
their associated cyclomatic numbers. Most of these functions are of moderate or less
complexity. However, at least the ones with a complexity higher than 20 should be
reviewed and be segmented into less complex parts.

38

4.2. Implementation Analysis

’ function name \ M ‘ ’ function name \ M ‘
ecpp_declarator 53 ecpp_find_ext_var 7
ecpp_ctor_init_list 34 ecpp_call_ctor 6
ecpp_mangle_arg 30 ecpp_clone_tree 6
ecpp_check_access 26 ecpp_access_specifier 6
ecpp_find_overloaded_func 21 ecpp_is_friend 5)
ecpp_find_scope 20 ecpp_is_member_struct)
ecpp_mangle_name 19 ecpp_gen_set_vtable)
ecpp_transform_call 17 | | ecpp_call_dtor 5
ecpp_struct_offset 16 ecpp_dtor_epilog 5)
ecpp_rank_arg_type 14 ecpp_free_init_list 3
ecpp_find_best_overloaded_func 13 ecpp_mangle_nested_identifier 3
ecpp_find_member 13 ecpp_add_friend 2
ecpp_find_struct 13 ecpp_dtor_prolog 2
ecpp_gen_default_dtor 9 ecpp_add_this_pointer 2
ecpp_gen_default_ctor 9 ecpp_auto_call_dtors 2
ecpp_linkage_specification 9 | | ecpp_auto_dtor 1
ecpp_find_var 8

Table 4.6.: Cyclomatic numbers (M) of the functions new for EC++.

4.2.4. Comparison of the GNU C and C+4++4 Compilers

In this section, we compare the sizes of the GNU C and C++ compilers [14]. The GNU
compiler collection (GCC) originally was only a C compiler, but by now it supports
many additional language front ends, e.g. Ada, C+-+, Fortran, Java, Objective-C,
and Objective-C+-+. The language front ends share a common internal structure and
produce an abstract syntax tree, which is then fed to the intermediate code generator
and optimizer to finally produce assembler code.

Table 4.7 shows the sizes of the C and C+-+ compiler programs of different versions
(the name of C compiler program is ccl, that of the C+-+ program is cclplus).
The relation between the program sizes varies significantly depending on the version.
One main reason of the ratio being smaller in newer versions is that modules common
to both compilers (e..g.: optimizer, back end) have grown in size. Thus, no clear
conclusion about the relation between the C and C++ extent can be made. The
absolute size increase does not change between the different versions. This implies,
that the C+-+ front end has not been extended much in newer versions.

We also compared the sizes of the source code of the C and C-++ compilers. We did
not count comments or empty lines, just as we did for the source code in Section 4.2.1.
Table 4.8 shows the results, which show the same tendencies as for the program sizes.
The ratio between C and C++ code also decreases with new versions. The absolute

39

4. Metrics

’ GCC version \ ccl size \ cclplus size \ Difference \ Relation ‘

4.0.0 | 4288kB 4716 kB | +428kB +10%
3.3.5 | 3036kB 3550kB | +514kB +17%
2.95.4 | 1648kB 2097kB | +449kB +27%

Table 4.7.: Sizes of the GNU C and C-++ compilers.

\ GCC version \ C lines of code \ C++ lines of code \ Difference \ Relation \

4.0.0 311k 374k +63k +20%
3.3.5 247k 312k +65k +26%
2.95.4 166 k 229k +63k +38%

Table 4.8.: Sizes of the sources of the GNU C and C++ compilers.

differences—which are clearly dedicated to the C++ front end—do not change much
across the different versions. This confirms the implication made about C’s and C++'s
program sizes: that the C++ front end has not been extended much in more recent
versions.

4.2.5. Conclusion

By measuring the extent of the source code and the size of the program with and
without EC++ support, we evaluated an increase by about 10% due to the EC++
upgrade. Our analysis of the sizes of the GCC compilers did not yield an estimate
of the relative increase of the C++ compiler compared to the C compiler. However,
we could conclude that the size of the C++ front end has remained very constant
across different versions. The cyclomatic complexity analysis reveals functions which
have a high complexity and thus should be reviewed for restructuring. Some functions
of vbee have a very high complexity which in some cases even increased through the
upgrade to EC++. Those functions are candidates for future restructuring. Overall,
we estimate the effort of upgrading a C compiler to support EC+-+ to be moderate.

40

5. Related Work

The basic concept we use to implement the EC+-+ extensions into a C compiler is not
novel, but has been used in other compilers. To create a EC++ compiler by upgrading
a C compiler however, is a new approach since all other EC+-+ compilers in the market
are restricted C++ compilers. Designing languages and defining specifications based
on existing languages and specifications—like C++ was designed based on C, and
EC++ is specified based on C+-+—is a common practice. In this chapter we examine
specific representatives of these categories.

The approach we use to implement the additional EC++ functionality, is to re-
duce the new EC++ constructs to equivalent C constructs. This is basically the same
concept that Cfront [39] uses. Cfront was the original compiler for C++, which con-
verted C++ to C. In contrast to Cfront, we do not generate C code, but perform the
transformations from EC++ to C constructs in vbece’s internal data structures.

There are a limited number of EC++ compiler vendors in the market, including
Green Hills Software [15], IAR Systems [16], and TASKING [35]. All offered compil-
ers are C, C++, and EC++ compliant compilers. Thus, it is almost certain, that the
EC++ compilers are restricted C-++ compilers. To our knowledge, there is no EC+-+
compiler available, that is based on a C compiler. The only EC+-+ library imple-
mentation that is widely available is developed by Dinkumware [10]. This library is
compatible with most popular C++ compilers. Any of the compatible C++ compil-
ers can be used together with the EC+-+ library to compile EC-++ applications. An
interesting suggestion by Dinkumware is to mix the EC+- library with the standard
template library (STL) in C++ applications.

The Java Micro Edition (Java ME) [34] by Sun Microsystems, is a set of specifi-
cations of Application Programming Interfaces (APIs) for embedded devices. These
APIs are much smaller and have reduced functionality compared to the ones used for
PC applications. Which of the specifications apply is defined by the application en-
vironment. One of the most prominent applications of Java ME technology are Java
MIDlets [44]. MIDlets are frequently used in mobile phones to employ third party
programs such as games. There are two API specifications that apply to MIDlets: one
is device-independent (CLDC [31]), and the other is device-dependent (MIDP [30]).
In contrast to EC++, the Java language is not restricted for MIDlets. EC++ ap-
plications are eventually deployed as programs consisting of machine code that runs
directly on the target processor. On the other hand, MIDlets are compiled into byte—
code which is run in a virtual machine on the mobile device. Both EC++ and MIDlets
use smaller libraries designed for embedded systems. However, the MIDlet libraries are

41

5. Related Work

designed especially for mobile devices, whereas the EC+- library targets no specific
category of embedded systems.

The Java Card technology [33] is also developed by Sun Microsystems, which en-
ables small Java programs to be run on smart cards. Smart cards are “defined as any
pocket-sized card with embedded integrated circuits” [47]. The Java Card specifica-
tion [32] contains specifications for the virtual machine and the runtime environment
for Java Card applications. Similar to EC++ being a restricted C++-, a Java Card
virtual machine supports only a subset of the Java language. Features not supported
by the Java Card virtual machine include threads, cloning, char , double , float |,
and long types. A garbage collector is not required for a virtual machine, but can
optionally be supported. EC+-+ and Java Card have in common, that they both use
smaller libraries designed for embedded systems. However, in contrast to the EC++
library targeting no specific class of embedded systems, the Java Card libraries are
designed especially for smart cards.

The development of programming languages by extension is quite common. EC-++
and C++ extend C by object-oriented features, a trend which occurred to many
languages. For example, Common Lisp [40] introduces the object—oriented paradigm
to Lisp [42]. “Lisp is a family of computer programming languages” and “a number
of dialects have existed over its history” [42]. Common Lisp is an ANSI standard,
which was developed as an effort to standardize divergent Lisp dialects. By including
the Common Lisp Object System (CLOS), object—oriented programming is supported
in Common Lisp. The development history of Lisp and Common Lisp compared
to the development of C, C++, and EC+-+ differ greatly. However, they have in
common, that an older language—or family of languages—has been extended with
object—oriented features.

Another example, where a language has been extended with object—oriented features
is Object Pascal [45]. Object Pascal inserts object—oriented functionality into Pascal.
The Delphi language [45] also evolved from Pascal and is closely related to Object
Pascal. In 1993, the Technical Committee X3J9 created a draft for object—oriented
extensions of Pascal [36]. This draft is based on the ISO specifications of Pascal [17]
and Extended Pascal [19]. The draft never advanced to a standard, but inspired other
languages, such as Delphi. To some extent, this approach is comparable to the one we
intended for the specification of EC++ based on C. However, the biggest difference
lies in the level of specifity on which the two definitions are done. The way in which
the draft specifies the extensions is more abstract than we aimed for in the EC++
specification. Our goal was a specification in the same manner as the official EC++
specification, thus a complete list of all textual adjustments required on the basis. The
draft for the Pascal extensions does not define how to textually adjust the bases, but
rather states the modifications on a more functional level.

42

6. Future Work

In this chapter, we present the tasks for the future development for the topics of this
thesis.

e Implementation of missing features
The EC++ extension of the vbee compiler is lacking the features specified in
Section 3.3 (mainly references and user—defined operators). Obviously, the task
of completing the EC-++ features in order to reach EC++ compliance has high
priority.

e Additional optimizations
As stated in Section 3.2.2.3, dynamic function calls are costly compared to sta-
tic function calls. This is primarily due to two additional pointer dereferencings
being required. For further optimization, a global program analysis can be per-
formed to find locations in which a dynamic function call actually always calls
the same function. In these locations, the dynamic calls can safely be replaced
with static calls [2].

e Include a standard EC++ library
The official EC++ specification [13| defines the EC++ language, as well as the
standard EC++ library. In this thesis and in the vbee implementation we did
not concern ourselves with the library. However, to fully support EC++, the
compiler must be accompanied by a standard EC++- library. There are basically
two options: the library can be custom—built, or a third party library is included.

e Additional grammar metrics
In Section 4.1.1, we compared the extent of the official EC++ grammar [12],
and the alternative EC++ grammar based on C (stated in Appendix B) by
counting the number of rules. In [27], additional metrics for the comparison
of grammars are specified. One of the main ideas in this paper is to interpret
the grammars as programs. This is done by mapping the grammar elements
onto elements of programs: “The procedures correspond to non—terminals, and
procedure bodies are the right—hand sides of the production rules. The control
primitives are the union and concatenation operations of context free grammars,
which correspond to alternation and sequencing respectively” [27]. This way,
metrics typically used for programs can be applied to grammars. For example,

43

6. Future Work

the cyclomatic complexity metric which we applied on the implementation of
vbee in Section 4.2.3, can be applied on the alternative EC+-+ grammars.

44

7. Conclusion

EC+-+ is officially defined in terms of differences to C++. In this thesis, we took a
different approach on EC+-+ and examined it in terms of differences to C. Defining
EC++ based on C from a functional point of view resulted in a moderately sized list
of incompatibilities and different functionality between the two languages. This set of
issues proved to be a quite concise and descriptive definition of EC++ based C. Our
attempt to specify EC+-+ as textual differences to the C specification turned out to
be unreasonable both in terms of usability and producability. Thus, this low level of
abstraction was inappropriate for an alternative definition. However, the differences
viewed on a higher abstraction level —from a functional point of view—yielded a usable
definition.

We also used this functional definition as a guideline for our implementation of a
EC++ compiler by extending a C compiler. We applied metrics to measure the form
of the specifications, by evaluating the textual extent. This provided an impression of
the size and complexity of the specifications. Using metrics to measure the content of
specifications in terms of complexity turned out to be of little use. Basically, the only
statement that could be concluded from the results of the alpha metric is that the
specifications are not just random texts. However, the ideas behind the alpha metric
are interesting, but more research is required to improve their usability.

Implementing a EC+-+ compiler by extending a C compiler proved to be reasonable.
The incompatibilities and different functionality required significant adjustment and
extension of the front end. But the required changes and extensions were limited
only to the front end of the compiler. The intermediate code, optimizations, and
back end of the C compiler can be used for EC++ without change. All additional
EC++ functionality could be reduced to equivalent C constructs. Implementing the
EC+-+ features in this way proved to be realizable quite straightforward. Applying
metrics to evaluate the source code and program size gave an impression of the extent
of the effort. The evaluation of the cyclomatic complexity revealed hot—spots of the
implementation where restructuring is appropriate to decrease complexity and improve
maintainability and understandability.

45

7. Conclusion

46

A. Specification of EC+4++4 based
on ISO C99

6.5.2.2 Function calls

e Adjust! <1st par.>:

The expression that denotes the called function shall have type lvalue that refers
to a function (in which case the function—to—pointer standard conversion (4.3)
is suppressed on the postfix expression), or pointer to function returning-void—
or—returning an-objeettype-other than anarraytype- or a member function
call. For a member function call, the postfix expression shall be an implicit
(9.3.1, 9.4) or explicit class member access (5.2.5) whose id-expression is a
function member name, or a pointer-to-member expression (5.5) selecting a
function member. The first expression in the postfix expression is then called
the object expression, and the call is as a member of the object pointed to or
referred to. In the case of an implicit class member access, the implied object
is the one pointed to by this . [Note: a member function call of the form
f() is interpreted as (*this).f() (see 9.3.1). | If a function or member
function name is used, the name can be overloaded (clause 13), in which case
the appropriate function shall be selected according to the rules in 13.3. The
function called in a member function call is normally selected according to the
static type of the object expression (clause 10), but if that function is virtual
and is not specified using a qualified—id then the function actually called will
be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed
or referred to by the current value of the object expression. 12.7 describes the
behavior of virtual function calls when the object expression refers to an object
under construction or destruction. |

e Replace <2nd par.>with:
If no declaration of the called function is visible from the scope of the call the
program is ill-formed.

e Omit <6th par.>

!Text underlined is inserted into and text crossed out is removed from the C99 specification.

47

A. Specification of EC++ based on ISO C99

48

Replace <7th par.>with:

When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8,
12.1) with its corresponding argument. When a function is called, the parameters
that have object type shall have completely—defined object type. [Note: this
still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by—value parameter to have an incomplete class
type. | During the initialization of a parameter, an implementation may avoid the
construction of extra temporaries by combining the conversions on the associated
argument and/or the construction of temporaries with the initialization of the
parameter (see 12.2). The lifetime of a parameter ends when the function in
which it is defined returns. The initialization and destruction of each parameter
occurs within the context of the calling function. [Example: the access of the
constructor, conversion functions or destructor is checked at the point of call in
the calling function. | The value of a function call is the value returned by the
called function except in a virtual function call if the return type of the final
overrider is different from the return type of the statically chosen function, the
value returned from the final overrider is converted to the return type of the
statically chosen function.

Omit <9th par.>

New paragraph:

Calling a function through an expression whose function type has a language
linkage that is different from the language linkage of the function type of the
called function’s definition is undefined (7.5).

New paragraph:

The type of the function call expression is the return type of the statically chosen
function (i.e., ignoring the virtual keyword), even if the type of the function
actually called is different. This type shall be a complete object type, a reference
type or the type void .

New paragraph:

A function can be declared to accept fewer arguments (by declaring default
arguments (8.3.6)) or more arguments (by using the ellipsis, ... 8.3.5) than
the number of parameters in the function definition (8.4). [Note: this implies
that, except where the ellipsis (...) is used, a parameter is available for each
argument. |

New paragraph:
Recursive calls are permitted, except to the function named main (3.6.1).

New paragraph:
A function call is an lvalue if and only if the result type is a reference.

B. Lexical Grammar

B.1. Lexical Grammar

B.1.1. Lexical Elements

token:
keyword
identifier
constant
string—literal
punctuator

preprocessing—token:
header-name
identifier
pp—number
character—constant
string—literal
punctuator
boolean—literal
each non—white—space character that cannot be one of the above

49

B. Lexical Grammar

B.1.2. Keywords

keyword: one of

auto break case char

const continue default do

double else enum extern

float for goto if

inline int long register
restriect—— return short signed

sizeof static struct switch

typedef union unsigned void

volatile while _Bool _Complex
—tmaginary—

asm. bool catch class
const_cast delete dynamic_cast explicit
export false friend mutable
namespace new operator private
protected public reinterpret_cast static_cast
template this throw true

try typeid typename using
virtual wchar _t

B.1.3. Identifiers

identifier:
identifier—nondigit
identifier identifier—nondigit
identifier digit
identifier—nondigit:
nondigit
e] o defimed el

nondigit: one of

_abcdefghijklm
nopgrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
01234567829

20

B.1. Lexical Grammar

B.1.4. Universal Character Names

B.1.5. Constants

constant:
integer—constant
floating—constant
enumeration—constant
character—constant
boolean—literal

integer—constant:
decimal-constant integer—suffizoy
octal-constant integer—suffizoy
hezadecimal-constant integer—suffiz,y

decimal—constant:
nonzero—digit
decimal—constant digit

octal-constant:
0

octal-constant octal-digit

hezadecimal—constant:
hezadecimal-prefix hexadecimal—-digit
hexadecimal-constant hexadecimal—digit

hexadecimal—-prefix: one of:
0Ox 0X

nonzero—digit: one of:
1234567829

octal-digit: one of:
01234567

51

B. Lexical Grammar

hezadecimal—digit: one of:
0123456789
abcdef
ABCDEF

integer—suffix:
unsigned-suffiz long—suffiz,y

long—suffiz unsigned—suffizyy

op

unsigned—suffix: one of:
uu

long—suffix: one of:
| L

Ee—

floating—constant:
decimal—floating—constant

hesadecirmal—floating—constant

decimal—floating—constant:
fractional-constant exponent-part,y: floating—suffizoy:
digit-sequence exponent-part floating—suffizop:

op

binary—ezponent—part-floating—suffizspr
fractional-constant:
digit—sequence,, . digit-sequence

digit-sequence .

exponent—part:
€ signey digit-sequence
E signey digit-sequence

sign: one of
+ -

52

B.1. Lexical Grammar

digit—sequence:
digit
digit—sequence digit

floating—suffiz: one of:
flFL

enumeration—constant:
identifier

character—constant:
c—char-sequence ’
L' c-char-sequence’

c—char-sequence:
c—char
c—char-sequence c—char

c—char:
any member of the source character set except the single—quote ’ , back-
slash \ , or new-line character escape—sequence

escape—sequence:
simple—escape—sequence
octal-escape—sequence
hexadecimal—escape—sequence

simple—escape—sequence: one of
LS S AR\
\a \b \f \n \r \t \v

53

B. Lexical Grammar

octal-escape—sequence:
\ octal-digit

\' octal-digit octal-digit

\ octal-digit octal-digit octal-digit

hezxadecimal—-escape—sequence:

\X hexadecimal—digit

hezxadecimal-escape—sequence hexadecimal-digit

boolean—literal:

true

false

B.1.6. String Literals

string—literal:

s—char-sequence:

s—char

n
s—char—sequence,p
L" s—char-sequence,, "

s—char-sequence s—char

s—char:

any member of the source character set except the double—quote " , back-

escape—sequence

B.1.7. Punctuators

slash \ , or new—line character

punctuator: one of
[1) } ->
++ - & * + - - !
/ % « » < > <= >=
== I= - | & & ”
X = *= [= 0= +=
= «K= »= &= "= |: ,
#H o< > <% %> % %:%:
B L => % new. delete and
and_eq bitand bitor compl not not_eq
or or_eq Xor Xor_eq

o4

B.1. Lexical Grammar

B.1.8. Header Names

header-name:
< h-char-sequence >
" q-char-sequence '

h—char—sequence:
h—char
h—char-sequence h—char

h—char:

any member of the source character set except the new-line character and
>

g—char—sequence:
g—char
q—char-sequence q—char

q—char:

any member of the source character set except the new-line character and
n (44

B.1.9. Preprocessing Numbers

pp—number:

digit
digit

pp—number digit
pp—number identifier—nondigit
pp—number € sign
pp—number E sign
pp—number P sign
pp—number P sign
pp—number .

%)

B. Lexical Grammar

B.2. Phrase Structure Grammar

B.2.1. Expressions

PTEMaTy—eTpression.:
dontifi
constant
string-literal
(expression)
this
id—expression

id—expression:
unqualified—id
qualified—id

unqualified—id:
identifier
operator—function—id
conversion—function—id
class—name

qualified—id:
opt_Nested—name—specifier unqualified—id
o identifier

postfiz—erpression:
PTiMary—erpression
postfiz—expression [expression |
postfiz—expression (argument—expression—istyy)
postfiz—exrpression . identifier
postfiz—erpression -> identifier
postfiz—exrpression ++
postfiz—exrpression --
: B Y initializer—ist)
B mitializer—list—)

type—specifier (_ expressiong,:)

argument—expression—list:
assignment—erpression,
argument—expression—list , assignment—erpression

26

B.2. Phrase Structure Grammar

UNATY—ETPTESSION,:
postfir—exrpression
++ unary-erpression
-- UNary—erpression
unary—operator cast—exrpression
sizeof UNATY—ETPTESSION,
sizeof (type—name)
New—erpression
delete—expression

unary-operator: one of
& * + - 71

New—erpression:

opt NEW new-placement,,, new—type—id new—initializeryy
opt NEW new-placement,,; (type—id) new-initializeryy:

new—placement:
(expression—list)

new—type—id.:
type—specifier—seq new—declarator,,;

new-declarator:
ptr—operator new—declarator,,;
direct—new—declarator

direct—new—declarator:
[expression |
direct—new—declarator [constant—expression]

new—initializer:

(expression—listyy)

delete—expression:

opt delete cast-expression
opt delete [] cast-expression

cast—expression:
UNATY—eITpPression
(type—mame) cast—expression

o7

B. Lexical Grammar

PM—ETPTESSLON.:
cast—exrpression
PM—ETPTESSLON . * Ccast—erpression
PM—eTPTession -> * cast—erpression

multiplicative—expression:
cast—expression
multiplicative—expression * €aSt—eEpression pPm-—expression
multiplicative—expression | east—ezpression pm—erpression
multiplicative—expression Y% cast—expression pm—erpression

additive—expression.:
multiplicative—expression
additive—expression + multiplicative—expression
additive—expression - multiplicative—expression

shift—expression:
additive—expression
shift-expression « additive—expression
shift-expression » additive—expression

relational—erpression:
shift—expression
relational—expression < shift—expression
relational—expression > shift—expression
relational—expression <= shift—expression
relational—expression >= shift—expression

equality—exrpression.:
relational—-expression
equality—exrpression == relational-expression
equality—expression '= relational—expression

AND-expression:
equality—exrpression
AND-ezpression & equality—expression

exclusive—OR—expression:
AND-expression
exclusive—OR—expression = AND—-expression

inclusive—OR—expression:
exclusive—OR—expression
inclusive-OR—expression | exclusive-OR—expression

28

B.2. Phrase Structure Grammar

logical-A ND—expression.:
inclusive—OR—expression
logical-A ND—-expression && inclusive—OR—expression

logical-OR—expression:
logical-A ND—expression
logical-OR—expression || logical-AND—expression

conditional—-expression:
logical-O R—expression
logical-OR—expression ? expression . conditional—expression

assignment—exrpression:
conditional-expression
UNATY—eTpression assignment—operator assignment—erpression

assignment—operator: one of
= x= [= = += = «= »= &= "= |:

eTPTession.:
assignment—erpression,
erpression , assignment—erpression

constant—exrpression:
conditional-expression

B.2.2. Declarations

declaration:
declaration—specifiers init—declarator—list,py ;
linkage—specification
asm—definition

declaration—specifiers:
storage—class—specifier declaration—specifiersyp:
type—specifier declaration—specifiersypy
type—qualifier declaration—specifiersop
function—specifier declaration—specifiersyp

init—declarator-list:
init—declarator
mit—declarator—list , init—declarator

59

B. Lexical Grammar

init—declarator:
declarator
declarator = initializer

storage—class—specifier:
typedef
extern
static
auto
register
friend

type—specifier:
void
char
short
int
long
float
double
signed
unsigned

enum-—specifier
Supedef e
bool
opt_Nested—name—specifier,,, class—enum—typedef-name
class—specifier
elaborated—type—specifier

type—specifier—seq:
type—specifier type—specifier—sequp

op

60

B.2. Phrase Structure Grammar

class—enum—typedef-name:
class—name
enum-name
typedef-name

elaborated—type—specifier:
class—key 1, nested—name—specifier,, identifier
enum : ,,; nested—name—specifieryy, identifier

specifier—qualifier—list:
type—specifier specifier—qualifier—listypy
type—qualifier specifier—qualifier—list,p,

struct—declarator—list:
struct—declarator
struct—declarator—list , struct—declarator

struct—declarator:
declarator
declarator,y, : constant—expression

enum-—specifier:
enum identifiery, { enumerator—list }

op y
' T

enum identifier,,; { }

enumerator—list:
enumerator
enumerator—list , enumerator

enumerator:
enumeration—constant
enumeration—constant = constant—erpression

type—qualifier:
const
restrict
volatile

61

B. Lexical Grammar

62

function—specifier:
inline
virtual
explicit

asm—definition:
asm { string-literal }

linkage—specification:
extern string-literal { declaration—list,, }
extern string-literal declaration

declarator:
pointeryy, direct—declarator

direct—declarator:
Jemtih
(declarator)
. -
op

op

op
declarator—id

direct—declarator (_ parameter—type—listy,,:) cv—qualifier—seqyp

op

direct—declarator [constant—erpressionyy: |

declarator—id:
1d—expression
opt_Nested—name—specifier,,: type—enum—typedef-name

pointer:
* type—qualifier—list,, cv—qualifier—seqop
* type—qualifier—list,, cv-qualifier—seqyy: pointer
& type—qualifier—listyp
& type—qualifier—listyy, pointer

type—qualifier—list:
type—qualifier
type—qualifier—list type—qualifier

B.2. Phrase Structure Grammar

parameter—type—list:
parameter—list
parameter—list ,
parameter—listyy ...

parameter—list:
parameter—declaration
parameter—list , parameter—declaration

parameter—declaration:
declaration—specifiers declarator
declaration—specifiers abstract—declaratoryy
declaration—specifiers declarator = assignment—expression
declaration—specifiers abstract—declarator,,y = assignment—expression

identifier—list:
identifier
identifier—list , identifier

type-name:
specifier—qualifier—list abstract-declaratoryp,

abstract—declarator:
pointer
pointer,y, direct-abstract-declarator

direct—abstract—declarator:
(abstract-declarator)

op! op!

op

op: op
direct—abstract-declarator,, (parameter—type—list) cv—qualifier—seqy
direct—abstract—declarator,,, [constant—expression,y |

cv—qualifier—seq:

cv—qualifier cvo—qualifier—sequp

cv—qualifier: Same as type—qualifier
const
volatile

typedef-name:
identifier

63

B. Lexical Grammar

initializer:
assignment—erpression,
{ initializer—list }
= { initializer-list , }
(expression—list)

initializer—list:
destgrationsg: initializer
indtializer—list , destgretiongy: initializer

B.2.3. Statements

statement:
labeled—statement
compound—statement
expression—statement
selection—statement
iteration—statement
Jump—statement

labeled—statement:

identifier . statement
case constant—exrpression . statement
default : statement

compound-statement:
{ block—item—list,, }

block—item—list:
block—item
block—item—list block—item

64

B.2. Phrase Structure Grammar

block—item:
declaration
statement

expression—statement:
exTPTESSLONopt |

condition:
eTpression
type—specifier—seq declarator = assignment—expression

selection—statement:
if (expression condition) statement
if (expression condition) statement else statement
switch (ezpression condition) statement

iteration—statement:
while (ezpression condition) statement
do statement while (ezpression condition) ;
for (eEpressiongsr CONditiony, ; expressiongyy condiliong, |
empressionopt) statement
for (declaration ezpressiorgs: conditiony, ; erpression.,) statement

Jump—statement:
goto identifier ;
continue ;
break ;
return eTPTESSIONopt |

B.2.4. External Definitions

translation—unit:
external—declaration
translation—unit external—declaration

external—declaration:
function—definition
declaration

function—definition:

declaration—specifiers,,. declarator ctor—initializer,, compound-statement

65

B. Lexical Grammar

declaration—list:
declaration
declaration—list declaration

B.2.5. Preprocessing Directives

66

preprocessing—file:
grouPopt

group:
group-part
group group—part

group-part:
if-section
control-line
text—line
non—directive

if—section.:
if-group elif-groupsyy: else—groupyy,: endif-line

if—group:
it constant-expression new-line groupop
ifdef identifier new—line groupgp
ifndef identifier new-line group,y,

elif—groups:

elif-group
elif-groups elif-group

elif-group:
elif constant—erpression new-line groupop

else—group:
else new-line groupp

endif-line:
endif new-line

B.2. Phrase Structure Grammar

control-line:

include pp-tokens new-line
define identifier replacement-list new—line
define identifier lparen identifier—list,y,) replacement—list new-line
define identifier lparen ...) replacement—list new-line
define identifier Iparen identifier-list , ...) replacement-list
new—line
undef identifier new—line
line pp—tokens new-line
error pp-tokens,, new-line
pragma pp-tokens,y, new-line
new-line
text—line:

pp-tokensyy, new-line

non—directive:
pp—tokens new—line

Iparen:
a (character not immediately preceded by white—space

replacement—list:
pp-tokensyy

pp—tokens:
preprocessing—token
pp—tokens preprocessing—token

new-line:
the new-line character

B.2.6. Classes

class—name:
identifier

class—specifier:
class—head { member—specification,, }

class—head:
class—key identifier,, base—clauseyy
class—key nested—name—specifier identifier base—clauseyy

67

B. Lexical Grammar

class—key:
class
struct
union

member—specification:
member—declaration member—specificationp
access—specifier . member—specification,,

member—declaration:
decl-specifier—sequ,. member—declarator—listypy ;
function—definition ;
opt_Nested—name—specifier unqualified—id

member—declarator—list:
member—declarator
member—declarator—list , member—declarator

member—declarator:
declarator
declarator pure—specifier
declarator constant—initializer
identifier,,: . constant—expression

pure—specifier:
=0

constant—initializer:

= constant—expression

B.2.7. Derived Classes

base—clause:
base—specifier—list

base—specifier—list:
base—specifier

base—specifier:
opt_Nested—name—specifier,,, class—name
access—specifier 1, nested—name—specifiery, class—name

68

B.2. Phrase Structure Grammar

access—specifier:
private
protected
public

B.2.8. Special Member Functions

conversion—function—id:
operator conversion—type—id

conversion—type—id:
declaration—specifiers conversion—declarator,y

conversion—declarator:
pointer conversion—declaratoryy

ctor—initializer:
mem—initializer—list

mem—initializer—list:
mem-—initializer
mem—initializer , mem—initializer—list

mem—initializer:
mem—initializer—id (_ argument—ezpression—list,,)

mem—initializer—id:
opt_Nested—name—specifier,, class—name
identifier

B.2.9. Overloading

operator—function—id:
operator operator

operator: one of

new delete new(] delete][]

+ - * / % B & | ~
= < > 4= = x= [|= U=
? 7: ? : » »= «= == =
<= >= && W ++ - , > ok ->
0 1

69

B. Lexical Grammar

70

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-
niques, and Tools. Addison—Wesley, Reading, Massachusetts, USA, 1986.

[2] Andrew W. Appel. Modern Compiler Implentation in Java. Cambridge University
Press, Cambridge, UK, 2002.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
and M. Woodger. Report on the algorithmic language ALGOL 60. Communica-
tions of the ACM, 3(5):299-314, 1960.

[4] Volker Barthelmann. vbce — portable ISO C compiler, 2002. http://www.
compilers.de/vbcc.html

[5] Grady Booch. Object Solutions: Managing the Object—Oriented Project. Addison—
Wesley, Reading, Massachusetts, USA, 1996.

[6] Benjamin M. Brosgol. TCOLAda and the "middle end"of the PQCC Ada com-
piler. In SIGPLAN ’80: Proceeding of the ACM-SIGPLAN symposium on Ada
programming language, pages 101-112, New York, NY, USA, 1980. ACM Press.

[7] Ana Isabel Cardoso, Rui Gustavo Crespo, and Peter Kokol. Assessing software
structure by entropy and information density. SIGSOFT Softw. Eng. Notes,
29(2):2-2, 2004.

|8] Carnegie Mellon Software Engineering Institute. Cyclomatic Complexity,
2000. http://www.sei.cmu.edu/str/descriptions/cyclomatic_
body.html

[9] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++
ABI (Revision: 1.86), 2005. http://www.codesourcery.com/cxx-abi/
abi.html

[10] Dinkumware, Ltd. Dinkum Compleat Libraries, 2006. http://www.
dinkumware.com/manuals/

[11] Embedded C++ Technical Committee. Rationale for the Embedded C+-+ spec-
ification, 1998. http://www.caravan.net/ec2plus/rationale.html

71

Bibliography

[12] Embedded C++ Technical Committee. Annex A (informative): Grammar sum-
mary, Version WP-AM-003, 1999. http://www.caravan.net/ec2plus/
gram_efd.html

[13] Embedded C+-+ Technical Committee. The Embedded C++ specification,
Version WP-AM-003, 1999. http://www.caravan.net/ec2plus/spec.
html .

[14] Free Software Foundation. The GNU Compiler Collection, 2006. http://gcc.
gnu.org/

[15] Green Hills Software, Inc. Green Hills Optimizing C/C++/EC++ Com-
pilers, 2004. http://www.ghs.com/download/datasheets/c++_ec+
+compiler.pdf

[16] TAR Systems. Extended Embedded C++, 2006. http://www.iar.com/

[17] International Organization for Standardization. ISO/IEC 7185:1990: Program-
ming language Pascal, 1990.

[18] International Organization for Standardization. ISO/IEC 9899:1990: Program-
ming languages — C, 1990.

[19] International Organization for Standardization. ISO/IEC 10206:1991: Program-
ming language Extended Pascal, 1991.

[20] International Organization for Standardization. ISO/IEC 14882:1998: Program-
ming languages — C++, 1998.

[21] International Organization for Standardization. ISO/IEC 9899:1999: Program-
ming languages — C, 1999.

[22] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-
Hall, Englewood Cliffs, New Jersey, USA, 1978.

[23] Peter Kokol. Measuring formal specification with a—metric. SIGSOFT Softw.
Eng. Notes, 24(1):80-81, 1999.

|24] Peter Kokol, Vili Podgorelec, Henri Habrias, and Nassim Hadj Rabia. The
complexity of formal specifications—assessments by a—metric. SIGPLAN Not.,
34(6):84-88, 1999.

[25] Thomas J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 2(4):308-320, 1976.

[26] Thomas J. McCabe and Arthur H. Watson. Software Complexity. Crosstalk,
Journal of Defense Software Engineering, 7(12):5-9, 1994.

72

Bibliography

[27] J. Power and B. Malloy. Metric-based analysis of context-free grammars, 2000.

|28] A. Romanovsky, J. Xu, and B. Randell. Exception Handling in Object-Oriented
Real-Time Distributed Systems. In Proceedings of the 1st IEEE International
Symposium on Object-Oriented Real-time Distributed Computing (ISORC °98),
pages 32-42, 1998.

[29] Bjarne Stroustrup. The C++ Programming Language. Addison—Wesley, Reading,
Massachusetts, 1997.

[30] Sun Microsystems, Inc. Mobile Information Device Profile Specification, Version
2.0, 2002.

[31] Sun Microsystems, Inc. Connected Limited Device Configuration (CLDC) Spec-
ification, Version 1.1, 2003.

[32] Sun Microsystems, Inc. Java CardTM Specification, Version 2.2.1, 2003.

[33] Sun Microsystems, Inc. Java Card Technology Overview, 2006. http://java.
sun.com/products/javacard/overview.html

[34] Sun Microsystems, Inc. Java ME Technologies, 2006. http://java.sun.com/
javamel/technologies/index.jsp

[35] TASKING, Altium Limited. Embedded C-++ compiler technology, 2006.
http://www.altium.com/tasking/resources/technologies/
compilers/ecpp/

[36] Technical Committee X3J9. Object—Oriented Extensions to Pascal, 1993. http:
[lwww.pascal-central.com/OOE-stds.html

[37] David R. Tribble. Incompatibilities Between ISO C and ISO C++, 2001. http:
//david.tribble.com/text/cdiffs.htm

[38] Jim Turley. The Two Percent Solution, 2002. http://www.embedded.com/
showArticle.jhtml?articlelD=9900861

|39] Wikipedia. Cfront, 2006. http://en.wikipedia.org/wiki/Cfront

[40] Wikipedia. =~ Common Lisp, 2006. http://en.wikipedia.org/wiki/
Common_Lisp.

[41] Wikipedia. Embedded system, 2006. http://en.wikipedia.org/wiki/
Embedded_systems .

[42] Wikipedia. Lisp programming language, 2006. http://en.wikipedia.org/
wiki/Lisp_programming_language

73

Bibliography

[43] Wikipedia. Metaprogramming, 2006. http://en.wikipedia.org/wiki/
Meta programming

[44] Wikipedia. MIDlet, 2006. http://en.wikipedia.org/wiki/MIDlet

[45] Wikipedia. Object Pascal, 2006. http://en.wikipedia.org/wiki/
Object_Pascal

[46] Wikipedia. Reference (C++), 2006. http://en.wikipedia.org/wiki/
Reference\ \%28C\%2B\%2B\%29

[47| Wikipedia. Smart card, 2006. http://en.wikipedia.org/wiki/Smart_
cards .

[48] Reinhard Wilhelm and Dieter Maurer. Ubersetzerbau. Springer—Verlag, Berlin,
Germany, 1997.

[49] World Semiconductor Trade Statistics. WSTS Semiconductor Market Forecast
Autumn 2005, 2005. http://www.wsts.org

74

